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RANK OF A MATRIX

Objectives

I. Introduction

II. Rank of a Matrix

III. Elementary Operations (or Transformations)
IV. Determination of Rank by Equivalent Matrix.
V. Computation of Inverse using Elementary

VI. Self Check Exercise

I. Introduction

To understand the concept of rank of a matrix, firstly we take a look at the various
types of matricas the have studied in our presbes class.

(I) Transpose of a matrix : The matrix obtained from a given matrix A, by

interchanging its rows and columns, is called the transpose of A and is generally
denoted by A' or At or AT.

Thus if A Z[aij] then (j, i)th element of A' is equal to (i, j) element of A

A1 10 12
For example : If A= 2 1 3 ,then A'=|-1 1
0 3
Remarks :
(1) (A) = A (2) (A+B)=A"+B
(3) (k A)' =k A', 1 being a complex number. (4) (AB)' = B'A’

(II) Symmetric and Skew-Symmetric Matrices

1. Any square matrix A = [aij] is said to be a symmetric matrix if a; = a; i.e., (i, j)th
element of A is the same as the (j, ijth element of A. If we take the transpose of a
symmetric matrix A, it is the same as A.
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1 -1 2
1 2 ]

For example : |9 3|’|
2 3 5

2. Any square matrix A= [aij] is said to be a skew-symmetric matrix if a; =-a; i.e.
(i, j)th element is the same as the negative of the (j, i) element.

for a skew-symmetric matrix A, a; = - ay
If we put j = i, we get a; =-a; or a; =0i.e, every diagonal element of A is zero.

Examples of skew-symmetric matrix are

O h g

-h 0 f ,0 N
5 0

-g -f O

(III) Conjugate and Tranjugate of a Matrix
The Matrix obtained by replacing the elements by A by its complex conjugates, is
called the conjugate of A and is generally denoted by A.

Thus, if A= [aij] A= [%] where denotes the conjugate of ay
2+3i 7-51 6+i

For example : if A=| 5 2+3i 1-2i/,
-3 - 5i 0 2 - 5i

2-3i 7+5i 6-i
then A=| 5 2-3i 1+2i
-3-5i 0 2+5i

If all the element of A are real, then A _ A .
Note (1_\) =A

Tranjugate of Matrix
The conjugate of the transpose of a matrix A is called tranjugate of A and is denoted

by A°. Thus A® =(A")
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Clearly (A")= (A)'
A’ =(A)
For example : if

2+43i 6-i 5+2i
A= 3 2 -1+5i
0] 7-3i -5+6i

2-5 3 0
A’ =| 6+i 2 7 +3i
5-2i -1-5i -5-6i

then

Note : (Ae)e =A.

(IV) Hermitian and Skew-Hermitian Matrices

(1) A square matrix A :[aij] is said to be hermitian if a; :Eij i.e., (i, j)th element is
the conjugate of the (j, i)th element.

Now, daj =5ij say=ay i.e., the conjugate of any diagonal element is the same

element.
every diagonal element must be real.
For example :

2 5-6i 3-4 0 a+ib c+id
5+6i O 1-2i|,|a—-ib 1 m+in
3+41 1+2i 7 c—-id m-in P

(2) A square matrix A=[aijJis said to be Skew-hermitian if a;=-a; i.e., (i, jjthe
element is the negative conjugate of (j, i) element.

every diagonal element must be either zero or a purely imaginary number.



B.A. Part-1 4 Mathematics : Paper III

For example :

4  4-3i 6+5i
“4-3i 0 2+7i [
—6+5i —2+7i -9i

5i 3-7i
-3-71 9

(v) Orthogonal Matrix
A square matrix P over the field of reals is said to be orthogonal if and only if P'P = 1.
Now, if P is orthogonal, then P'P =1 = PP".

=[P'P|=] = [P||P|=I
=[P[P|=1 = |p['=1I

=|P|=4# = |[P|#0

= P is invertible

. If P is orthogonal, then P is invertible.

Also PP =1 = p' = P!

= PP' = PP! = PP' =1

. Pis orthgonal iff PP =PP' =1 i.e, iff P' = P

For example :

cosO sin0
—sin® cos©

(vi) Unitary Matrix

A square matrix P over the fied of complex numbers is said to be unitary if and only
if P°P I = PP®.

Now, if P is unitary, then PP =1

= [P'P| =[] [P°|[P|=1  =[F|[P|=1 =[P =IPl]

:>|P|2=I:>|P|¢O

= P is invertible
. if P is unitary, then P is invertible.

Also PPP=1=P =P ! = PP =PP ! = PP =1

o [Pl=+1
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= absolute value of a determinant of a unitary matrix is 1.
(vii) Similar Matrices
Let A and B be square matrices of order n over a field. Then A is said to be similar
to B over F if and only if there exists an n-rowed invertible matrix C over F such
that

AC=CBi.e. B=C!'ACor A=CB".
II. Rank of a Matrix

Definition : A number r is said to be rank of a non-zero matrix A if

(i) there exists at least one minor of order r of A which does not vanish, and

(ii) every minor of order (r + 1), if any, vanishes

The rank of a matrix A is denoted by p(A).

.. We have p(A) = r.

In other words, the rank of a non-zero matrix is the largest order of any non-vanishing
minor of the matrix.

Remarks : (i) the rank of a zero matrix is zero i.e., p(O) = O where O is a zero
matrix.

(ii) the rank of a non-singular matrix of order n is n,

(iii) p(A) <1, if every minor of order (r + 1) vanishes,

(iv) p(A) > 1, if there is a minor of order r whch does not vanish.

Some Important Results :-

Result 1: Prove that the rank of the transpose of a matrix A is the same as that of
the original matrix A.
Proof .If A=0,then A =0

p(A) = 0 and p(A") =0

= p(A) = p(A)

result is true in the case in which A is a zero matrix.
Now we discuss the case when A = O.
Let r be the rank of the matrix A = [a;] where A is of type m x n.
.. there exists at least one square submatrix R or order r such that |R|= 0.
Now R' is also a square submatrix of A' of order r.

Also [R|=|R|#0
p(A')>r
If possible, suppose p(A')>r

We take p(A')=r+1=>p(A)2r+1 [+ (A) = A]
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=p(A)=r+1 [+ (A) = A]

which is impossible as p(A) = r
our supposition is wrong

.'.p(A')%r
from (1), we have.
p(A)=r=p(A)=p(A).

Result 2 : Prove that dp(AA)=p(A)where % is a non-zero scalar.

Proof : IfA=0,thenAA=0
p(A) = 0 and p(AA) = 0
p(r A) = p(A)

S result is true in the case in which A is a zero matrix.
Now we discuss the case when A = O.

Let r be the rank of the matrix A =[aij] where A is of type m % n.

- there exists at least one square submatrix R of order r such that |R| =0

Now A R is a square submatrix of matrix A A of order r.
[AR|=A"|R|#0 as 2 #0,[R|#0
~p(AA)>r then p(AA)=T (1)
If possible, suppose p(AA)>r

We take p(rA)>r+1

.'.p(%(KA)jerrl [ of (1)]

= p(A)=r+1, which is impossible as p(A)=r
Our supposition is wrong

p(AMA)=r or p(rA)=p(A)
Result 3 : If A is an n-rowed non-singular matrix, then prove that dp(A_l) =p(A).

Hence deduce that p(adjA)=p(A).
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Proof : Here A is an n-rowed non-singular matrix
. |Al=0
= p|Al=n
A is non-singular
Al exists and AAT =1
= A7 =[] = |a[a| =1=]a| 2 0
A7 is an n-rowed non-singular matrix
= p(A"l):n:p(A_l):p(A)
Deduction
. 1 .
p(adjA)= p(mad}Aj [p(A)=p(24)]
= p(A"l) =p(A) = p(adjA)=p(A).
1 -1 3 o
Problem 1 : Find the rank of the matrix |1 © —° |
5 3 3 11

1 -1 3 6
Solution : Let A=|1 3 -3 —4
5 3 3 11

Since there does not exist any minor of order 4 or A

p(A)<3 (1)
1 -1 6
3 -4 1 -4 1 3
1 3 -4/=1 -(-1) +6
Now 3 11 5 11 5 3
5 3 11

there exists a minor of order 3 of A which does not vanish.

~ p(A)=3

: Paper III
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From (1) and (2), we get,
p(A)=3.
III. Elementary Operations (or Transformations)
We can also determive the rank of a matrix by using some other methods which are
bared on the element ary transformations of a matrix, that includes :
(1) The interchange of any two parallel lines.
(2) The multiplication of all the elements of any line by any non-zero number.

(3) The addition to the elements of any line, the corresponding elements of any
other line multiplied by any number.

Note : An elementary transformation is called a row transformation or a column
transformation according as it applies to rows or columns. Therefore, there are
three row transformation and three column transformations.

Symbols used for the transformations

(1) R, or R; © R; stands for the interchange of the ith and jth rows.
(2) Rgc)orRi — cR; stands for the multiplication of the ith row by ¢ # 0.

(3) R‘i}()or R; > R; +kR; stands for addition to the ith row, the product of the jth row
by k. Similarly

(4) Cjor C; <> C; stands for the interchange of ith and jth columns.

(5) CEC) or C; —» cC, stands for the multiplication of the elements of the ith column

by c # 0.
(6) ngk) or C; » C; +kC; stands for addition to the ith column, the product of the jth

column by k.

Definition of Elementary Matrix

A matrix, obtained from a unit matrix, by subjecting it to a single elementary
transformation is called an elementary matrix.

Remarks :

IV. Determination of Rank by Equivalent Matrix.

When an elementary transformation is applied to a matrix, it results into a matrix of
the same order and same rank. The resulted matrix said to be equivalent to the
given matrix and we use the symbol - to mean.

Let A be any given matrix, Reduce the matrix to equivalent matrix by using the
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following steps :

(1) Use row or column transformations, if necessary, to obtain a non-zero element
(preferably 1) in the first row and the first column of the given matrix.

(ii) Divide the first row by this element, if it is not 1.

(iii) Subtract suitable multiples of the first row from the other rows so as to
obtain zeros in the remainder of the first column.

(iv) Subtract suitable multiples of the first column from the other columns so as
to get zeros in the remainder of the first row.

(v) Repeat the steps (i) — (iv) starting with the elements in the second-row and
the second column.

(vi) Continue in this way down the "main diagonal" either until the end of the
diagonal is reached or until all the remaining elements in the matrix are zero. The
rank of this matrix, which is equivalent to the given matrix A, can be determined by

inspection and consequently the rank of the given matrix A can be determined.

Problem 2 : Using elementary transformations, find the rank of the matrix

1 3 2
4 6 5
35 4
1 3 2
Sol. Let A=|4 6 5
3 5 4
1 3 2
~|0 -6 -3|, by R, >R, -4R,,R; > R; - 3R,
0 -4 -2
1 3 2] . .
~10 2 1 ,byR2—>—§R2,R3—>—§R3
0 2 1
1 3 2]
~10 2 1|,byR; >R;-R,
0 0 O]
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100
1{,byC, > C, -3C,,C4 > Cy —2C,
0

l
o O
o N

!

[

N O
(@)

0,by C; > Cy =~ C;

1 0O
The rank of |0 2 0] is 2 as minor

0 0O

10
0 2

of order 2 does not vanish

~p(A)=2.

Problem 3 : Find the rank of the matrix

1 -1 1 5
A= 1 -1 -2
3 -1 -1 7
1 -1 1 5
Sol. A=|2 1 -1 -2
3 -1 -1 7
1 -1 1 5
~/0 3 -8 -12|,by R, >R, -2R;,R; > R; -3R;
0 2 -4 -8
1 -1 1 5
0 2 -4 -8
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1 -1 1 5
~l0 1 1 -4|,byR; >R, -2R,
0O 0 -6 O
(1 0 0 O
~l001 1 -4|byC,—>C,+C,,Cys >Cs-C;,C, >C, -5C,
0 0 6 O
1 0 0 O
|0 0 60
1 0 0 O 1 0 O
The rank of |[O 1 O O} is 3 as the minor [0 1 O0|=-6%#0 of order 3 does not
0 0 -6 0 0O 0 -6
vanish
p(A)=3.

Note : Normal form of a Matrix : The normal form of matrix A can be

I. O I
O O ’[Ir O]’ ol where [ is identity matrix of order 'r'.
Remarks : 1. Every non-zero matrix of rank r can, by a sequence of elementary

Ir

@)
transformations, be reduced to the form { O} where I, is a r-rowed unit matrix.

2. Let A be any non-zero matrix of rank r. Then there exist non-singular matrices
P and Q such that PAQ = kO

16 ol
3. A non-singular matrix can be reduced to a unit matrix by a series of
elementary transformations.

4. Every non-singular matrix is a product of elementary matrices.
S. The rank of a matrix is not altered by pre-multiplication or post-multiplication
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of the matrix with any non-singular matrix.
6. The rank of a product of two matrices cannot exceed the rank of either matrix.

1 2 3
Problem 4 : Prove that the matrix |2 3 0| is equivalent to I..

01 2

Sol. Let A=

(@ S I
= W N
N © W

1 2 3
0 -1 -6[,byR, >R, —2R,
01 2

01 2

o
—
(o))
g
<
~
NS
\2
|
o]
N

1 0 O

~|0 1 6| byR; >R;-R,
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.-.A ~13

. given matrix is equivalent to I,.

1 1 1
Problem 5:1f A=|3 1 1

,then find the matrices P and Q such that PAQ is in
1 -1 -1

the normal form. Hence find the rank of the matrix A.

1 1 1
Sol. Here A=|3 1 1|,
1 -1 -1

We have A=1A1

1 1 1 1 00 1 00
43 1 1]/=|/0 1 0O|A|O 1 O
1 -1 -1 0 0 1| |0 01
(1 1 1 1 00 1 00
=|1 -1 -1{=/0 0 1|A|0 1 O|,byR, <>Ry
3 1 1 01 0| |0 01
1 1 1 1 0 0] [1 00
=0 -2 —2|=|-1 0 1|A|0 1 O
0 2 -2 -3 1 0| |0 0 1

by R, >R, -R,,R; > R; -3R,

1 0 O 1 0O 1 -1 -1
=|0 -2 -2/=|-1 0 1|A|0 1 O
0 -2 -2 -3 10 0 0 1

>
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1 0 O i 0 01 1 -1 -1 )
0o -2 -2 31 0 0O 0 1
1 00 i 0 01 1 -1 -1
=0 1 1|= 3 0 —EAO 1 0 |,byR;-R;+2R,
0 0O 2 1 -1 0O 0 1
1 0O i 0 01 1 -1 O
= O 1 O = 5 O _EAO ]. _1 ,byC3—)C3_C2
0O 0O 201 -1 0O 0 1
=2 91_pag
O O]
1 0 O 1 -1 o
where p = l 0 _l ,0=|0 1 --1
2 2 0O O 1
-2 1 -1

.. PAQ is in the normal form and p(A) = 2.

2 -1 O 4
Problem 6 : Reduce the matrix 1 3 5 -3
3 -5 -5 11
6 4 10 2

rank of the matrix.

: Paper III

to normal form. Hence find the
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Solution : A=

A W N -

o O O

o O O S © O+

S © O+

-14
~14

N N = O
N N~ O

o O —~ O
o O© ~ O

15 Mathematics :

-1 0 4
3 5 -3
-5 -5 11
4 10 2

A W~ N

10 10
-20 20
-20 20

,byR; - R, -2R;,R; > R; -3R;,R; > R; - 6R;

10 10
-20 20
-20 20

,byC, > C, —3R,,C4 - C; —5C,,C4 > C, +3C,

1 1 1
,byC, - -=-C,,C;, > -——C,,C, > —C
NASD) 7 208 10 "% 4 10 4

NN~ O

,byR; >R, - 2R,,R, >R, - 2R,

S O~ O

Paper III
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by Cy = Cy—C,,Cp >C,u —C,

o O ~ O
o O O O
O o O O

1, O
0 O

~ rank (A) = 2
V. Computation of Inverse using Elementary Transformations
We can understand this compoutation of finding invese with the help of following
example:
If we are to find inverse of A, we write A = I A and go on performing row
transformations on the product and the prefactor of A till we reach the result I = BA,
then B is the inverse of A.

Problem 7 : Using elementary operations, find inverse of the matrix:
2 31
A=-3 5 1
1 7
2 31
-3 51

&
ut
—
Il

o
—
o
>

|
w
Ul

1{=|0 1 O|AbyR, &Ry
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1 7 2] o0 1
|0 26 7 |=|0 1 3|AbyR, >R,+3R,,R; >R;-2R,

1 7 2 0 0 1
3 |A,byR; - 26R,
0 —286 -78| |26 0 -52

o
N
o))
~
Il
o
—

1 7 2170 o0 1
|0 26 7 (=0 1 3 |A,byR; >R;+11IR,
0O 0 -1| |26 11 -19

1 7 0] [52 22 -37
|0 26 0 |=|182 78 -130|A,byR, »R; +2R;,R, >R, + 7R,
0O 0 -1| [26 11 -19

1 7 0] [52 22 -37 .
10 1 0= 7 3 -5 A,byR2 —)%RQ,Rs —)—R3
10 0 1] |-26 -11 19
1 0 o] [ 3 1 -2
01 0|=| 7 3 -5|AbyR; >R, -7R,
10 0 1] [-26 -11 19
I[=A1A
3 1 -2
Al=| 7 3 -5
-26 -11 19

VI. Self Check Exercise

a+ic -b+id

1. Show that the matrix A= } .
b+id a-ic

}is unitary if and only if
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a?+b?+c?+d%=1-

2. (i) If P, Q are unitary, prove that QP is also unitary.
(ii) If P, Q are orthogonal, prove that QP is also orthogonal.
3. If A is an orthogonal matrix, then A' and A are also orthogonal.
200
4, Find the rank of the matrix|0 2 O],
0O 0 2
0 6 61
] |8 7 2 3
S. Find the rank of each matrix 230 1
-3 2 11
1 2 -3 -1
6. Find the rank of the matrix |3 4 1 2
5 2 1 3
(2 3 4
7. Find the rank of the matrix | 3 1 2|, using equivalent matrix.
-1 2 2

3412
8. Find the rank of the matrix |3 2 1 4|, using equivalent matrix.
7 6 2 5

1 1 2
9. For the matrix A=|1 2 3 |, find two non-singular matrices P and
0 -1 -1

Q such that PAQ is in the normal form and hence find out rank of matrix A.
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10. Reduce the matrix |2 -1 3

to the form I, and find rank.
1 -2 1

11. Use elementary transformation to find the inverse of

1 32

Sl -1 10 41

(i) (if)
52 3

: Paper III
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ROW RANK, COLUMN RANK AND THEIR EQUIVALENCE

Objectives

I. Row and Column Rank of a Matrix.

II. Linear Dependence|Independence of Vectors

III. Equality of Row Rank and column Rank Raw Rank and column Rank:

IV. Self check Exerise

I. Row and Column Rank of a Matrix.

Firstly, we define the echelon form of a martrix:
A matrix A is said to be a row (column) equivalent to a matrix B if B can be obtained
from A after a finite number of elementary row (column) operations, and we write

ARB or ASB.

Definition (Echelon Form):

A matrix A = [a,] is said to be in the echelon form it

(i) The zero rows (columns) of A occur below all the non-zero rows (columns) of A
(ii)The number of zeros before the first non-zero element in a row (column) is less
than the number of such zeros in the next row (column).

(iii) If R;,R,,.... are non-zero rows (columns) of A, then first non-zero entry in these

rows (columns) is 1. The Moreover Matrix is in (column) row reduced echelon form
in addition to the above conditions, if a column (row) contains the first non-zero
entry of any row(column), then every other entry in that column (row) is zero.

Row and column Rank of a Matrix

Let A be any matrix. Then Row rank of A, denoted by pg (A), is defined as the
number of non-zero rows in a row echelon form of A.

Similarly,m column rank of A, denoted by p¢ (A), is defined as the number of non-

zero column in a column echelon form of A.

20
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1 3 2 4
. 5 2 0 1

Problem 1 : Find the row rank and column rank of 3 a4 7|
-7 5 6 10

1 3 2 4
. A 5 2 0 1
Solution : Let 4= 5 _, 4 _-

-7 5 6 10

1 3 2 4
0 -13 -10 -19
o _13 -10 -19 ,byR, > R, -5R;,R; > R3 -3R;,R; > R, + 7R,

-0 26 20 38

1 3 2 4

0 -13 -10 -19

0 0 0 o0

1 3 2 4

o1 212 1

~ 13 13 ],byR, = - R,

00 0 O

00 O O

Which is in row-echelon form.
Since there are two non-zero rows in the row-echelon form
row rank of A is 2
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1 3 2 4

5 2 0 1
Now A=

3 4 -4 -7

-7 5 6 10

1 0 0 o0
5 -13 -10 -19
“l3 _13 —10 -10]PYC2 > C273C1Cs >G5 -26,C4 5 €y 4G,

-7 26 20 38

"1 0 0 o0
5 1 -10 19| 1,
3 1 -10 -—19Y 2725

-7 -2 20 38

1 0 00
L5 oo ,by C5 - C; +10C,,C, — C, +15C,
3 1 00
-7 -2 0 0

which is column echelon form having two non-zero column.
column rank = 2.
In order to understand the concept of row rank and column rank more deeply, we
must have the knowledge of law vectors and column vectors.
II. Linear Dependence |Independence of Vectors

Definition (n-vector) : An ordered tuple of n numbers is called n-vector.

For example : {xl, Koyyeeenns xn} is an n-vector.
Linear Dependence of Vectors : A set V, V,, ..., V, of vectors is said to be
linearly dependent set, if there exists t scalars p,, p,, ..., p,, not all zero, such that

PV +PyVy +...+pV, =0, where O is a n-vector with all components zero.

Any set of vectors, which is not linearly dependent, is called linearly independent.
i.e. aset V,,V,, ..., V of n-vectors is said to be linearly independent if every
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relation of the form p,V; +p,V, +...+p,V, =Oimplies p; =p, =...=p,; =0.
Linear Combination of Vectors :
A vector V is said to be a linear combination of the vectors
Vi, Vo,, Vi if V=p,V, + p,V, +...+ p,V,, where p;,p,,..., p; are scalars.
Result 1 : If a set of vectors is linearly dependent, show that at least one member
of the set is a linear combination of the remaining members.
Proof : Let V., V,, ..., V,be any linearly dependent set.
. the relation p,V, +p,V, +...+p,V, =0

implies that at least one of p, p,, ..., p,is non-zero
Let p, be non-zero

Now p;V; =-pyVy —=p3Vz —... =P Vy
SV, = (—p—Q) V, + [—p—?’j A [—&j v,
by b by
The relation (1) shows that V, is a linear combination of V, V_, ..., V..

Result 2 : If n is a linear combination of the set {Vl,VQ,...,Vr},then the set

{n, V1, V,,...,V;} is linearly dependent.

Proof : Since nis a linear combination of V,V,, ...,V

r

S n=kV; +k,V, +...+k V|
=>n-kV,-k,V, -..-k, V., =0

Now at least one of the coefficients i.e. of n is non-zero.
. setn,V;, V,,..., V. is LD.

Result 3 : Prove that every super set of a linearly dependent set is linearly
dependent.

Proof : Let {VI,VQ,---,VP,Vpﬂ,---,Vr}be a super set of a linearly dependent set

{V17V27-~-7Vp}. Since {Vl,Vg,---,Vp} is linearly dependent set

.. there exist scalars k, k,, ..., kp (not all zero) such that
kVi +k,Vp +.. 4k V, =0

It can be re-written as
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k1V1 + k2V2 +...+ kap +...+ krvr =0, where kl’kQ""’kp""’kr and not all zero.

ooset {Vl,VQ,... V. V, } is L.D.

» Vpoeeer Vr

Brief Outline of Vector Space :
In this lesson we briefly explain what a vector space is? The detailed studyof vector
space will be done in lesson 0.5.
Definition : The n-vector Space : The set of all n-vectors over a field F, to be
denoted by V _(F), is called the n-vector space over F.
Sub-space of n-vector Space V_
Any non-zero empty set, S of vectors of V (F) is called a subspace of V (F), if when
(i) V,, V,are any two members of S, then V, + V, is also a member of S and
(ii) If Vis a member of S and k is a member of F, then kV is also a member of S.
Subspace Spanned by a Set of Vectors
Let V|, V,, ..., V be a set of n-vectors.
The set of all linear combinations of the above set is called a subspace spanned by
the set of vectors V, V, ..., V..
Basis of a Subspace
A set of vectors is said to be the basis of a subspace, if

(1) the subspace is spanned by the set and

(ii) the set is linearly independent.
Dimension of a subspace
The number of vectors in any basis of a subspace is called the dimension of the
subspace.
Another Method to check for the Linear Dependence of Vectors :

Let Vi =(by1,bia;-,b1n), Vo = (b2, bag, ey Doy )

vV, = (bnl’ bros.eos bnn) be a vectors of the vector space.
By definition these vectors are L.D. vectors iff there exists scalars o;,0,,...,a, €F,
not all zero such that oV, +a,V, +a,V, =0

=a, (bu, b12,....,b1n) + 0y (b21,b22,...,b2n) +...ta, (bnl, ..... ,bnn) =0

= (aybyg +0gbyy +...+ayb

nl» a1b12 + u2b22 + ...,
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+o,bp, .y by, Fobon 4L+ anbnn)
=(0,0,...,0)

oyby +oyby +..+0 by =0

alb12 + OL2b22 +..+ Otnbn2 = 0
o, by, +asby, +...+0,b,, =0
These homogenous equations must have a non-trivial (o's not all zero) solution.

Moreover the above equations will have a non-trivial solution iff the determinant of
its coefficient matrix is zero

b11 b21 bnl
ie., iff b12 b22 bn2 )
bln b2n bnn
Hence vectors V, V,, ..., V_are L.D.
bll b21 bnl
- b by - b
bln b2n bnn
b11 b21 bln
or iff b21 b22 b2n -0
b, by ... by,

[+ value of det. remains unchanged if rows and columns are interchanged] and
vectors are L.I. iff this determinant # O.

Problem 2 : Examine whether (1, -3, 5) belongs to the linear space generated by
S, where S={(1,2,1),(1,1,-1),(4,5,-2)} or not?

Sol. If possible, let (1, -3, 5) belong to the linear space generated by S

= 3 scalars q,, o, and a; such that
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(1,—3,5) =y (1,2,1) + oy (1, 1,—1) +og (4, 5,—2)
= (0, 20,0 ) + (g, 05 — 01y ) + (403,503, 2013)

= (o + oy +4ag, 20, + 0y + 5oz, 0 — 0y — 203 )

By equality of vectors, we must have

o +0y +40y =1

204 + oy + 505 =-3

0y — 0y —205 =5

Adding (1) and (3), we get,

204y + 205 =6

o +toaz3 =3

and adding (2) and (3), we get,

3a; +30; =2
=>a +a _2
1793 =5

From (4) and (5), it is clear that we cannot found o, and a, and so a; .

. our supposition is wrong.
Hence (1, -3, 5) does not belong to the Linear Space of S.

Problem 3 : Is the system of vectors [-1, 1, 2], [2, -3, 1], [10, -1, O] linearly
dependent ?
Sol. Given vectors are
Vi =[-1,1,2],V, =[2,-3,1], V5 =[10,-1,0]
Consider the relation

kv +k,V, +k3V3 =0

or k, [-1,1,2]+k, [2,-3,1] + k3 [10,-1,0] =[0,0,0]

-k; +2k, +10k; =0 .. (1)
k; -3k, -k;=0 .. (2)
2k; +k,=0 ... (3)

From (3), k, = -2k,
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from (2), k; +6k; -k; =0 = k; =7k,

from (1), -k; -4k, +70k;, =0 = 65k; =0=k; =0
k,=0,k;=0

ki=k,=k;=0

k\Vi +k,V, +k;V;=0=k, =k, =k; =0

given set of vectors is L.I.

Problem 4 : Find the value of k so that the vectors

1 1 k
-11{,| 2 |and| O |are L.D.
3 -2 1

Sol. Let a, b, ¢ be scalars, not all zero, such that

1 1 k
a|l-1|+b| 2 |+c|0|=0
3 -2 1

where O is 3 x 1 zero matrix

a b ck 0
= |-a|+| 2b [+]| O |=|0
3a -2b c 0

a+b+ck 0
=| -a+2b |=|0
3a-2b+c 0
a+b+ck=0
-a+2b=0
3a-2b+c=0

From (2), we get a = 2b
.3=>3a-a+c=0=>c=-2a

Put the values of c and b in (1), we have

Mathematics

: Paper III



B.A. Part-I 28 Mathematics : Paper III

a+i—2ak:O:>3—a—2ak:0:>2a£§—kj:0
2 2 4

Buta =0
[as if a = O then b = 0 and ¢ = 0 which implies the given vectors are L.I.)

= i—k:O = k:g,
4 4

III. Equality of Row Rank and column Rank Raw Rank and column
Rank:

If Ais any m X n matrix, then

(i) the space spanned by the set of m rows is called row space of A and the
number of independent row vectors is called the row rank of A.

(ii) the space spanned by the set of n columns is called Column Space of A and
the number of independent column vectors is called the column rank of A.

In other words, Column rank of any matrix A is the maximum number of linearly
independent columns of A.

Result 4 : Prove that pre-multiplication by a non-singular matrix does not alter

the row rank of a matrix.

R,
R2 .
Proof : Let A=| * |be m x n matrix and
Rl'l'l
Pi1 P12 Pim
p_ P21 Po Pom
.......... be m x n non-singular matrix
pml pm2 """ pmm
Pi1 Pz - Pmm || R4
B—PA - Pa1 Py oo Do || Ry
Let e e e e :

Pmi Pm2 - Pmm Rm
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PR+ P2 Ry + 4 PRy
P21R1 + PRy + i+ Pom Ry

. each row of B is a linear combination of the rows R, R,, ....R_ of matrix A.

every member of the row space of B is as will a member of the row space of the
matrix A.
Again A=P'B

Proceeding as above, we find that every member of the row space of A is a member
of the row space of B.
. row spaces of A and B are the same

pre-multiplication with a non-singular matrix does not alter the row rank.
Note : We can prove that post-multiplication with a non-singular matrix does not
alter the column rank of a matrix.
Result 5 : If s, be the row rank of an m x n matrix A, then there exists a non-

singular matrix R of type m x m, such that

o)
O

where K is an s x n matrix consisting of a set of a linearly independent rows of A.
Proof : Here A an s x n matrix with s as row rank, so out of m rows of A, s rows are
L.I and remaining m-s are L.D. By row transformations, being s L.I. rows in first s
rows. Now each of the last (m — s) rows, which are L.D., is a linear combination of
first s rows.
Now subtracting suitable multiples of first s rows from the last (m — s) rows, we get a
matrix in which each of last (m — s) rows is a zero row. Therefore the resulting

K
matrix is of the type {O}

We know that every row transformation can be effected by pre-multiplying with a
non-singular matrix. Let R be the product of all non-singular matrices corresponding
to all row transformations.

K
. RA= {O} , Where K is s X n matrix.
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Note : Similarly we can prove that AS= [L O], where L is an m x s matrix, s being

the column rank of A.
Result 6 : Prove that the row rank of a matrix is the same as its rank.
Proof : Let r be the rank and s be the row rank of m x n matrix A.

Since s is row rank of A

there exists a non-singular matrix R such that

K
RA = [O} , where K is s x n matrix

since each minor of order (s + 1) of the matrix RA involves at least are row of zeros
p(RA)<s

r<s ...(1)
Since r is rank of A
there exists a non-singular matrix P such that

G
PA = [O] where G is r x n matrix.

The row rank of PA, being the same as that A, is s. Also PA has only r non-zero rows.
the row rank of PA can, at the most be r
. s<r ..(2)
From (1) and (2)
r=s
i.e. rank of A = row rank of A.

Corellary : Prove that the column rank of a matrix is the same as its rank.

Proof : We know that columns of A are the rows of A'.
column rank of A = row rank of A’

rank of A’

rank of A

Hence the result

Remarks :

1. Rank of A = row rank of A = column rank of A.

2. The rank of a matrix is equal to the maximum number of its linearly independent
rows and also to the maximum number of its linearly independent columns.

3. If A an n-rowed non-singular matrix, then its rows as well as columns form L.I.
sets.
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4. If A, B be two matrices of the same type, then p(A+B)<p(A)+p(B).

5. If A, B are two n-rowed square matrices, then
p(AB)=p(A)+p(B)-n.

Problem 5 : Examine the linear independent or dependence of the rows of the

3 2 4
matrix A=|{1 0 2 |, hence find its rank.
1 -1 -1
3 2 4
Solution : A=|1 0 2
1 -1 -1
3 2 4
0O 2 1 2 1 0
~|Al=]1 0 2|=3 -2 +4
-1 -1 1 -1 1 -1
1 -1 -1

=30+ 2)-2(-1-2) + 4(-1-0)
=32)-2(-3)+4(-1)=6+6-4=8=0
: A is non-singular matrix.

three rows of A and L.I.

rows of matrix A form of L.I. set

p(A)=3.

Problem 6 : Find the value of k so that the vectors

1 1 k
-1{,| 2 |and| O |areL.D.
31|-2 1

Solution : Let a, b, ¢ be scalars, not all zero, such that

1 1 k
al-1|+b|l 2 |+c|0|=0
3 -2 1
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where O is 3 x 1 zero matrix

a b ck
=|a |[+|2b |[+| 0 |=
3a -2b c

o O O

[a+b+ck 0
=| -a+2b |=|0
|3a-2b+c 0
a+b+ck=0
—-a+2b=0

3a-2b+c=0
From (2), we get a = 2b

(3) >3a-a+c=0 =c=-2a
Put the values of c and b in (1) , we have

a+i—2ak:033—a—2ak:0:>2a(§—kj:0
2 2 4

Buta =0
[as if a = O then b = 0 and ¢ = O which implies the given vectors are L.I.]

:i—k:O :kzi,
4 4

IV. Self check Exerise

1. Reduce to row reduced echelon form the matrix
01 3 -1 4
2 0 4 1 2
A=l1 4 2 0 -1|andfind pg(A).
34 -2 1 -1
6 9 -1 1 6|
1 2 -1 3
2. Find the row rank of the matrix A = 11 ) ;
1 2 0 1
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3. Show that the vectors V; =(1,2,3),V,(0,1,2) and V;=(0,0,1)generate
V,(R).
4, Show that the vectors [1 2 3],[8 -2 -1],[l -6 -5]form a L.I.

system.
5. Examine for linear dependence the vectors

1, 2, 4],[2 -1 3],[0, 1, 2],[-3, 7, 2] and find the relation if it exists.

6. Prove that the vectors x=(1,0,0),y=(0,1,0);z=(0,0,1)andw =(1,1,1)

form a linearly dependent set, but any three of them are linearly independent.

6 2 3 4
7. Show that the row vectors of the matrix [0 5 -3 1 |are linearly
0O 0 7 -2
independent.
8. Determine whether the following matrices have same column space
or not ?
1 35 1 2 3
A=|1 4 3|,B=|-2 -3 -4
1109 7 12 15
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II. Some Important Results

III. Characterirtic Equation of a Matrix

IV. Diagonalizable Matrix

V. Cayley Havilton Theorem

VI. Minimal Polynomial and Minimal Equation

VII. Problems
VIII. Self Check Exercise

I. Introduction

An expression of the form dA x™+Ax™'+A,x™?+...+A  ,x+A,. where

Ay, AL A,, ..., A, are all square matrices of the some order n and m is a positive

m
integer, is called a n-rowed matrix polynomial of degree m.

Note : Two matrix polynomials are said to be equal iff the coefficients of the like
powers of x are the same.

1. Eigen values are also known as proper values, characteristic values, latent roots
or spectral values. Similarly eigen vectors are also called proper vectors,
characteristic vectors, latest vectors or spectral vectors.

2. The set of characteristic roots of a matrix A is called the spectrum of the matrix
A.

II. Some Important Results

Result 1 : Prove that ) is an eigen value of n-rowed square matrix A over a field F
it and only if [A-2]|=0.

Proof : (i) Assume that X is an eigen value of A over F.

34
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there exists a non-zero column matrix X of type n x 1 such tat

AX =X
= AX-AX=0
= AX-AX=0
=(A-A)X=0
=|A-21=0 [+X#0O]
[**AX =0 has a non-trivial solution iff |A| = O]
(ii) Assume that |A - M| =0
|A - M|X =0 has a non-trivial solution
AX-AIX=0

or AX-AX=0
or AX =X
Where X is a non-zero matrix
A is an eigen value of A over F.

Note. ) is an eigen value of A over F iff A — Al is a singular matrix.

Result 2 : If X is a characteristic vector of a matrix corresponding to the

characteristic value A, then kX is also a characteristic vector of A corresponding to
the same charactristic value X(k # O) .

Proof : Since X is a characteristic vector of A corresponding to the characteristic
value A.

X # 0O and

AX = AX
Now A(k X)= k(A X) = k(A X) = A(k X)

Now kX is a non-zero vector such that A(k X) =1 (kX)

kX is a characteristic vector of A corresponding to the characteristic value A.
Note : Corresponding to a characteristic value A , there may corresponds more
than one characteristic vectors.
Result 3 : If X be an eigen vector of the n-rowed square matrix A over a field F,
thn X cannot correspond to two distinct eigen values.

Proof : Since X is an eigen vector of A over F.
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X is a non-zero column matrix of order n x 1.
Suppose eigen vector X corresponds to two eigen values A, A, of A.

AX =2X and AX=1,X
=M X=1X

= (A —2y)X=0

=h —hy =0

Hence the result.

Result 4 : Prove that any system of eigen vectors Xy X,y een X _ corresponding

respectively to a system of distinct eigen values A;,A,,A, of a matrix A is linearly
independent.
Proof : Try Yourself.

Result 5 : Prove that the characteristic roots of a hermitian matrix are real.

Proof : Let A be a characteristic roots of a hermitian matrix A.

there exists a non-zero n x 1 column matrix X such that
AX = AX

= X’ (AX) = X* (AX)
= X9AX = XX
= (X"Ax) - (xxex)e

= X°A° (x")e =2x° (X )9

= X°AX =2 XX [ ~A° =A as A is hermitian and (X")9 =X]
=X X =1 XX [ AX =2X]

= XX =1 XX

= (A -2)x°X=0

=A-A=0 ['.'Xev&OainO]
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=A=A

= Ais real

Hence the result.
Result 6 : Prove that any two characteristic vectors corresponding to two distinct
characteristics roots of a hermitian matrix are orthogonal.

Proof : Let X,, X, be the characteristic vectors corresponding to characteristic

roots A;, A, of the hermitian matrix A.
AXy =M%,
AX, =X,
From (1), XQGAX1 = XQGKIX1

From (2), X,’AX, = X,"A,X,

0 0
Now (X,'AX;) =X,°A%(X,') = X,’AX,,
since A’ =Aas A is hermitian

(X,°2.%, )6 = X,1,X,

= X0 (X )6 =1, X,"X, [~ A4, Ay are real |

= XX, = 1,X, X,
= (M-2)XX,=0
But A —A, #0

X,'X, =0

= X,, X, are orhogonal.

Result 7 : Prove that characteristic roots of a unitary matrix are of unit modulus.
Proof : Let A be given unitary matrix.
A°A=1 (1)

Let A be a characteristic root of A.
there exists a non-zero vector X such that
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AX = AX .. (2)
= (ax)’=(»x)’

= X%A% =ax® ... (3)
From (2) and (3), we get,

(x°A%) (aX) = (3X°) (2X)
= X*(A%A)X =22 X°X
=  X'IX=a XX [~ of (1)]
= XX = XX

= (M—1)X9X:o

=  i-1-0 [ XX #0asX#0)|
= [A*-1=0

= |rP=1

= A =1

Hence the result.
Result 8 : Prove that any two characteristic vectors corresponding to two distinct
characteristic roots of a unitary matrix are orthogonal.

Proof : Try Yourself.

III. Characterirtic Equation of a Matrix

If A be any n-rowed square matrix over a field F and A an indeterminate, then the
matrix A-AI is called the characteristic matrix of A.

The determinant |A — A I|, an algebraic polynomial in A of degree n, is called the
characteristic polynomial of A.

The equation |A — A I| = O is called characteristic equation of A.

Remark : An eigen value A of matrix A is always a root of its characteristic equation
and every root of the characteristic equation of A is an eigen value of A.

.. in order to find eigen values of A, we should find roots of the characteristic equation
of A.
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IV. Diagonalizable Matrix

An n x n matrix A is called diagonalizable if there exists an invertible n x n matrix P
such that P! AP is a diagonal matrix.

Method to find Diagonal Matrix for a Diagonalizable matrix.

Step | : Find eigen values Ay, Ay, ....., A, of A.

Step II : Find corresponding eigen vectors X;, X,,...,X, . If number of eigen vectors
< n, A is not diagonalizable.

Step III : Find P ={X;X,X;... X, }and P".

Step IV : p 'AP=Diag. (A, g, .ceoesy Ay
is required diagonal matrix.
Note : A is diagonalizable if and only if A has n L.I. eigen vectors.
V. Cayley Havilton Theorem
Statement : Every square matrix satisfies its characteristic equation.
Proof : Let A be any square matrix of order n, and its characteristic equation be
Po + P+ PoA? +...+ P A" =0
We have to prove that A satisfies this equation
ie., pl+pA+pA%+...+p, A" =0
For proving this, we proceed as follows :

We know that (A-Al)adj (A-Al)=|A-1|I [-Aadi A=Al
Let adj. (A-AI)=B, +BA+ByA* +...+ B, A"

we have, (A-AI) (BO +BA+BAZ 4.+ anlxn‘l)

= (pO +P A+ PoA? pnk“)l
Equating the coefficients of like powers of A, we get,

AB, = p,1

0

AB; —By =pil

ABy —B; =pol
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AB, ; -B,, =pnl

B, =p.l
Pre-multiplying above equations by I, A, A2, ..., A"respectively and adding, we get,
O:pOI+p1A+p2A2 +...4+ p,A",which is same as (1).
Hence the theorem.
VI. Minimal Polynomial and Minimal Equation
If m(x) be a scalar polynomial of the lowest degree with leading coefficient unity,

such that m(x) = O is satisfied by A i.e. m(A) = O, then the polynomial m(x) is called
the minimal polynomial of A and m(x) = O is called the minimum equation of A.

Note. The degree of the minimal equation of an n-rowed matrix is less than or
equal to that of its characteristic equation which is n.
Derogatory and Non-derogatory Matrices

An n-rowed matrix is said to be derogatory or non-derogatory, according as the
degree of its minimal equation is less than or equal to n.

VII. Problems
Problem 1 : Prove that a square matrix A and its transpose A have the same set of
eigen values.

Sol. Characteristic polynomial of At

= A" —AI|=| A - A" | =] (A =AD" |

=|A-2] 1At =] Al]

= characteristic polynomial of A
A and A'have same characteristic polynomial and hence the same set of
eigen values.

| Al

Problem 2 : If a is an eigen value of a non-singular matrix A, then prove that o

is an eigen value of adj. A.
Sol. Since a is an eigen of a non-singular matrix A
o # 0 and there exists a non-zero column vector X such that

AX =o0X

= (adj A)(AX)=(adj A) (o X)

= [(adj.A)(A)]X=a[(adj A) X]



B.A. Part-1 41 Mathematics : Paper III

= (IA|I) X =(adj. A) X

~  (adja)x=2lx

o
[A] , :
= , isan eigen value of adj. A.
8 -6 2
Problem 3 : The characteristic roots of |6 7 —4/| are 0, 3 and 15. Find the
2 4 k
value of k.
8 -6 2
Sol. Let A=|-6 7 -4
2 4 k
A 00
Al=10 & O
0 0 A
8-1 -6 2
A-A=| -6 7-A -4
2 -4 k-i
characteristics equation of matrix Ais |A-AI| =0

8-% -6 2
or 6 7-L -4|=0
2 -4 k-A

Since A = 0 is a root of it

8 -6 2
-6 7 -4|=0
2 -4 k
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7 -4 -6 -4

8‘—4 k‘_(_6)‘2 Kk

or 8(7k—-16)+6(—6k +8)+2(24-14)=0
or 56k -128-36k +48+20=0
20k =60 =k =3.

Problem 4 : Define similar matrices and prove that similar matrices have same

characteristic polynomial and hence same eigen values.

Sol. Let A and B be square matrices of order n over a field F. Then A is said to be

similar to B over F if and only if there exists an n-rowed invertible matrix P over F
such that

AP=PBie. B=P ! AP or A=PBP!
Let A and B be two similar matrices

B=P'AP
B-Al=P'AP-AI=P' AP-AP"'P [+ PP =]
=P'AP-P ' (AI)P=P ' (A-AI)P
|IB-AI|=|P' (A-AI)P|
=P [|A-A|P|
=|A=A|[P||P|=|A-2AL|| PP
=|A-AI[[T]

|[B-AI|=|A—-AI [11]=1]

matrices A and B = P! AP have the same characteristic polynomial and hence
the same set of eigen values.

Problem 5 : Determine the eigen values and eigen vectors of the matrix

3
A=|2
1

e
w N

Is it diagonalisable ? Justify.
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311
Sol. A=|2 4 2
11 3

1 00 A 0 O

I=|0 1 O|=AI=|0 A O

0 01 0O 0 A

or 2 4-% 2 [=0

6-% 6-1 6-1L
or 2 4-) 2 |=0,byR, >R, +R, +R,
1 13-

11 1 1 0 O
or (6-2))2 4-12 2 |=0or(6-1)[2 2-% 0 |=0
1 1 3- 1 0 2-1

or  (6-2)[(1)(2-2)(2-%)]=0

or  (6-1)(2-1)=0

A=2,2,6
which are the eigen values of A.

X
The eigen vector X =|y|#O corresponding to the eigen value ) =6 is given by

V4
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AX=21Xor(A-6I)X=0

-3 1 1||x 0 1 1 -3||x 0
or 2 -2 2||ly|=|0lor|2 -2 2|ly|=|0
1 1 -3||z 0 -3 1 1]||z 0

1 1 -3f|x 0
or 0 4 8 ||ly|=]|0|,byR; >R3+R,
0 0 0|z 0

Now the coefficient matrix of these equations is of rank 2. Therefore these equations
have only 3 — 2 = 1 L.I. solution. Thus there is only one L.I. eigen vector
corresponding to the value 6. These equations can be written as

Xx+y-32=0
-4y +8z=0 =>y=2z
. xX+2z-3z=0 =>xX=z
Take z=1, Lx=1lLy=2
1
X =|2] is an eigen vector of A.
1
X

The eigen vector X=|y |# O corresponding to the eigen value ) =2is given by
z

AX=2X or (A=21)X=0

(1 1 10[x] [0]
or 2 2 2||ly|=|0
11 1 1|z |O]
(1 1 17[x] [0]
or 0 0 O0||y|=|0|,byR; >R, -R|,R; 2R3 -R;
10 0 0]|z] |O]
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The coefficient matrix of these equations is of rank 1. Therefore these equations
have 3 — 1 = 2 L.I. solutions. These equations can be written as

X+y+z=0 or =-y—-z
Takey=1,z=0 ; y=0,z=1
-1 -1
Therefore we find two L.I. eigen vectors of A as 1 jand) 0
0 1

1 -1 -1
P=(2 1 0
1 0 1
-1l 10 20 2 1
p| = 1 -1 — (-1 _1
Fiefz 1o o -0 eenft ]

=1(1-0)+1(2-0)-1(0-1)

:1(1)+1(2)—1(—1):1+2+1
=4
Co-factors of the elements of first row of |P| are

ie. 1,2,1respectively

1 0 2 02 1
o 1" 11 1’11 o

Co-factors of the elements of second row of |P| are

-1 -1j 1 -1 {1 -1, .
=‘ H ,—‘ ie. 1,2,-1respectively

O 1|1 1

Co-factors of the elements of third row of |P| are

-1 -1 1 -1 (1 -1, )
,— , ie. 1,-2,3respectively
1 O 2 0

1 2 1] [1 1 1
adjP=|1 2 -1|=l-2 2 -2
1 2 3 -1 -1 3
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1 1

p'AP==|-2 2

-1 -1

24 0

1
:Z 0 8
0 0

46

1 1 1
1
|2 2 =2
4

-1 -1 3
173 1 1)1 -1 -1
21/l2 4 2|2 1 0
31 1 3J[1 0 1
0 6 0 O]
0|=|0 2 O
8 0 0 2

which is a diagonal matrix.

Problem 6 : Verify Cayley Hamilton Theorem for the matrix A=

Hence find A .

0O 0 1
Solution : A=|{1 2 0
2 -1 0
1 0O A 0 O]
I={0 1 O|=AL={0 A O
00 1 0 0 A
-2 0 1]
2-2 O
A-A=|1 2-1 0O [=-A
-1 A
2 -1 -

=—x(—2x+x2)+1(—1—4+2x)=—x3 +20% =5+ 21

|A Al =-A% +2)0% + 20 -5

Mathematics : Paper III
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o O =
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The characteristic equation of A is |A—7»I| =0

or 23 +22+20.-5=0 or A2 -2 —20-5=0

We are to prove that A satisfies thiws equation i.e. A3 _2A2 _2A +5I=0

o o 1][o0 o0 1 2 -1 0
Now A?2=/1 2 0/|1 2 O0l|=|2 4 1
-1 0|2 -1 0-| [-1 -2 2

N

2 -1 0][o 0o 1 -1 -2 0
A =12 4 1||1 2 o0|=|6 7 2
-1 2 2{|2 -1 0-| |2 -6 -1
Consider A3 _2A? —2A +5I
-1 -2 2 2 -1 0 0 0 1 1 0 0] [00O
=6 7 2|-2/2 4 1|-2/1 2 0[|+5/0 1 0(=(0 0 O
2 -6 -1 -1 -2 2 2 -1 0 0 01| |0 00O

A® -2A% -2A +51=0
Re-multiplying both sides by A’!, we get,

A? —2A -21+5I! =21
2 -1 0] [o 0 1 1 00

=—|2 4 1|+[1 2 0[+2[0 1 0
-1 -2 2| |2 -1 0] [001

01 2

5A'=|0 2 -1
50 0
01 2

A’l_l02—1
5
50 0
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VIII. Self Check Exercise

1. If A is an eigen value of a square matrix A, then prove that ) is an

eigen value of A% and conversely.
2. Show that the necessary and sufficient condition for a 2 x 2 matrix

a b
[C d} to have zero as an eigen value is that ad - b c = 0.

311
3. Determine eigen values of the matrix |2 4 2
1 1 3
1 0 2
4, Find the characteristic roots and the spectrum of the matrix |0 2 O
0O 0 3
1 0 O
5. Diagonalize, if possibel, the matrix |0 2 1.
1 -1 4
S -6 -6
6. Verify Cayley-Hamilton Theorem for the matrix A={-1 4 2 |. Hence
3 -6 -4
find AL

7. Using Cayley Hamilton theorem, find A% if A = [; 21} .
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SYSTEM OF LINEAR EQUATIONS AND ITS CONSISTENCY

Objectives
I. Homogeneous and Non-Homogeneous Linear Equations (An Introduction)
II. Linearly Independent Solutions of AX = O

III. Consistency of AX = B
Iv. Problem

V. Self Check Exercise
I. Homogeneous and Non-Homogeneous Linear Equations (An
Introduction)

Let a;X; +a;9%Xy +...tax, =0
51X +AgpXy +. Ay, X, =0

be a set of m linear equations in n unknowns x, x,, ..., X_.
The above set of linear equations can be written as

ai;r A e 8y (|1X
aml am2 amn Xn
i.e., AX =0
a;; 4 Q1n Xy 0
a a ... a X 0
where A =| 21 722 M x=["?|,0=
aml amQ amn Xn O
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The matrix A is called the coefficient matrix.

Remarks : Any set of values Xy Xyy weneens , X_ which satisfy simultaneously the m
equtions in (1), is called a solution of the system.

A system of equations, which has a solution, is called consistent or compatible. If
the system does not has any solution, it is called inconsistent.

II. Linearly Independent Solutions of AX = O

Conditions under which a set of homogeneous equations possess a (i) trivial solution
of (ii) non-trivial solution.

Let there be m equations in n unknowns. So the coefficient matrix A is of type m x
n. Let r be rank of A.

Now eitherr<norr=n

(1) If r = n, then the equation AX =0 hasn-n=0

i.e. no linearly independent solution. Therefore, the equation AX = O has trivial
solution.

(ii) If r < n, then the equation AX = 0 has n — r linearly independent solutions.

Any linear combination of these n — r solutions will also be a solution of AX = O. So,
there are infinite number of non-trivial solutions.
Article 1 : Let A be an m x n matrix of rank r. Then the equation AX = O has (n-r)

linearly independent solutions.

Proof : The given equation is AX = O (1)
We have to prove two results :
(1) AX = O has (n - r) solutions
(ii) (n — r) solutions form a linearly independent set.

For proving first part, we proceed as following :
rank of A=r
column rank of A =r
A has r linearly independent columns. We assume that first r columns are

linearly independent and last (n-r) columns are linearly dependent.
Let A=[C; C,.C, C.,..C.]

equation (1) can be written as

[C, C,.C

T

Cr--Ch 5
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ie, Cx;+Cx,+..+Cx, +C X, 4 +...+C x, =0

C..1,C ..C, are linearly dependent columns.

r+l> ~Mr+lo°

each is a linear combination of C;,C,,....... , C,
Let Crn=pP11 C+Pa Co+... 4P G,

Cria =P21 Gy + P2 Co .+ P C;
C, =puC; + Pt Cy +... +p,C, wheret=n-r [ n= r+(n—r)]

The above equation can be written as

pllcl +p12C2 +....+p1rcr +(_1)CI‘+1 +O'C1"+2 +....+0.Cn = O
P21C1 + P2oCy +.ee + P C +0.Cy +(-1)Cip +....+0.C, =

p11C; p12Cy.ee+p;,C, +0C,; +0.C 5 +....+(-1)C, =O

Comparing one by one the equation in (3) with equation (2), we get,

_P11 ] _P21 ] _ptl 1

P12 P22 Pt2

plr p2r Pir
X, =[-11{,X,=[0 |,...,X,=[0

0 -1 0

0 0 0

_O | 0 -1

as t = n - r solutions of the equation
Now we have to show that these n - r solutions X, X, ..., X are linearly independent
vectors.
For this we consider the relation

P1X; +PaXg +...+p X =0
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P11 | [Poi | Pa |
P12 P22 Pt2
Pir Por Ptr
pi|-1 |+py|O0 |+...+p|O |=0O
. 0 -1 0
i.e.
0 0 0
0| 0 -1
Comparing (r + 1)th, (r + 2)th ..... nth elements, we get,
_pl :O7_p2 :O7~'-a_pt =0
P =pPy=...=p; =0
DX +PaXy + ... +p:X; =0
= P =Dy =-.... =p; =0
X Xgyeennn , X, are L.I. vectors

A X = O has n —r L.I. solution.

: Paper III

Article 2 : The equation AX = O has a non-zero (i.e., non-trivial solution) iff A is

singular.

Proof : Assume that AX = O has a non-zero solution.

i.e.,

n —r > 0 where r is the rank of n-rowed matrix A implies n > r.

rank of A is less than the order of the matrix.
A is a singular matrix.

Again, assume that A is a singular matrix

ud Ul

|A] =0

rank of A < order of A
r<n

n-r>0

equation AX = 0 has a non-zero solution.
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III. Consistency of AX =B

Conditions under which a system of non-homogeneous equations will have :

(i) no solution (ii) a unique solution (iii) infinity of solutions.

Let AX = B be a system of non-homogeneous equations.

(1) The equation AX = B has no soluiton if A and [A  B] do not have the same
rank.

(ii) The equation AX = B, has a solution if the rank of A is the same as that of [A

B]. If in addition, A is non-singular, then equation has a unique solution.
(iii) The equation AX = B will have infinite solutions if A and [A B] have the
same rank and A is singular.
Article 2 : The necessary and sufficient condition that the system of equations AX
= B is consistent (i.e., has a solution), is tha the matrices A and [A B] are of the
same rank.
Proof : Let p(A) = r where A is m x n matrix.
column rank of A is also r.

r columns of A are linearly independent and the remaining (n — r) are linearly
dependent.
Let C, C,,..., C be linearly independent and C
A =|[C, C,...C].

..., C_be linearly dependent where

r+1?

X

The given equation is Ax = B where X = X2

ie, [C, C,.C, C.,..C.]|x, |=B
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ie., x,C +x,Cp +...+x,C. +x,,C.,; +...+x,C, =B

Condition is necessary.

X

Asume that the equation AX = B has a solution X = X2

Xn
x ]
X2
~ we have [C, C,.C, C,;..C.]|x, |=B
Xri1
[ Xn |
X,C +x,Cp + .. +x,CL+x,.,,C ., +...+x,C =B .. (2)
C.;1 Crig, ..., C, are linearly dependent and
C,;,C,,..,C, are linearly independent.
C..1»--..,C, are linear combination of C,,C,,...,C,and consequently from (2),

B is also a linear combination of C;,C,,...,C,.
number of linearly independent columns of [A B] is also r.
if the equation AX = B has a solution, then rank of A is the same as that of [A
B].
Condition is sufficient.
Assume rank of A as well as of [A  B]isr.
rank of [A  B]isr.
number of independent columns of [A  B]

ie, [C C,.C, C...C, B]isr.

But C, C,, ..., C are already linearly independent.
B is linearly dependent column
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B is a linear combination of C, C,, ...., C

r

there exists r scalars p,, p,, ...., p, such that
B=p,C, +p,Cy +...+p,C,

The above equation can be written as

PG, +pCy +...+p,C,+0.C; +...+40.C, =B ... (3)
Comparing (1) and (3), we get,
X, =P1,X9 =Dgyees Xp =Ppy Xpyg =... =X, = 0.
o, ]

P2

X =|p, | is a solution of AX = B.

S if ranks of A and [A B] are same, the equation AX = B has a solution.
Article 3 : The equation AX = B has a unique solution if A is non-singular.
Proof : (i) Assume that A is non-singular i.e., A" exists.

from the equation AX = B, we have,
Al (AX) = A"'Bie., X = A"!B which is a solution of AX = B.

(i) We prove that the solution is unique.

If possible, let X, X, be two different solutions of AX = B

AX, =B and AX, =B
Consequently AX = AX,
=  AT(AX))=AT'(AX,)

which is not possible as X, X, are distinct.

our supposition is wrong.
Ax = B has a unique solution.

IV. Problem
Problem 1 : Find the value of k so that the equation
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Xx-2y+2z=0,3x-ty+2z=0,y + kx =0 have
(i) unique solution
(ii) infinitely many solution. Also find solutions for these values of k.
Solution : The given equations ar
X-2y+z=0
3x-y+2=0
Ox+y+kz=0

which can be written as

1 -2 1||x 0
3 -1 2|y|=|0
0 1 kllz 0
AX =0
1 -2 1
Where A=13 -1 2
0 1 k

1 -2 11 -2 1
|A|=|3 -1 2||0 5 -1|,byR, >R, -3R,
0 1 k|0 1 k

S -1
=1
1 k

‘=1(5k+1):5k+1
(i) Equations have a unique solution
if |A|#0
i,e. ifSk+1=+#0
1
. . k i —
i.e. if 5
(ii)System has infinitely many solutions
if |A|=0
i,e. ifSk+1=0
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1
ie. ifk= “5

1
When k=-= we have

57
1 -2 1 [x] [o
3 -1 2 ||y|=|0|,byR, >R, 3R,
o 1 -4z 19
5

|0 5 -1|ly|=]|0|,byR; > R;-R,

X-2y+z=0

5y—z=0:>5y=z:>y=éz

2 3 3
X-—z+z=0 =2x+—-2z=0=>x=-—2
S S S
Putz =k
. 3 1 .
solutions are x :—Ek,y:gk,z =k, where k is a parameter.

Problem 2 : Find non-trivial solution of the system of equations
x—-2y-3z=0
-2x+3y+5z=0

3x+y—-2z=0,if possible.

: Paper III
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Sol. The given equations are
x—-2y-3z=0
-2x+3y+5z=0

3x+y—-2z=0

which can be written as

1 —2 -3]|[x 0

-2 3 5 ||ly|=|0

|13 1 2|z 0

(1 -2 -3][x 0

0 7 7 ||z 0

1 -2 -3||x 0

0 -1 -1||y|=|0|,byR; > R3+7R,
0O 0 0|z 0

x-2y-3z=0

-y-z=0 =>y=-z

X+2z2-3z=0 =>x=2

Putz =k
x = k, y = -k, z = k, where k is a parameter.

Problem 3 : Show that the system of equations
X+y+2z=4,2x+5y-22=3,x+7y—-72=-6
is consistent and solve it.

Sol. The given equations are

X+y+z=4
2x+ 35y —-2z=3

X+7y—-7z=-6

which can be written as

Mathematics :

Paper III
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0 3 4||y|=|-5 |,byRy >R, -2R;,R; >R;-R;
0 6 -8||z -10

1 1 17[x] [4
0 3 4||y|=|-5|,byR; >R3-2R,
0 0 0|z 0

1 1 1 11 1 4
Now rank of |0 3 -4| aswellasof |0 3 -4 -5|is2.
0 0 O 00 O O

given equations are consistent and solutions are given by
XxX+y+z=4.

3y—4z=—5:>3y=4z—5:>y:iz—E
3 3
4 ) 7 17 7 17
X+—X-——+4+z2=4=2>X+—2z2=—2D>X=——2Z+—
3 3 3 3 3 3
Putz=k
solutions are x=—zk+£,y=ik—é,z:k
3 3 3 3

where k is a parameter.

Problem 4 : Investigate for what values of a, b the following equations

X+y+5z=6
X+2y+3az=>b

X+3y+ax=1

have

Paper III
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1. no solution
2. unique solution
3. an infinite number of solutions.

Sol. The given equations are

X+y+5z=6
X+2y+3az=>b

X+3y+ax=1

which can be written as

11 5 ||x 6

1 2 3al||ly|=|b

1 3 allz 1
11 5 X 6
i.e., AX=BwhereA=|1 2 3a|,X=|y|,B=|b
1 3 a z 1

The given equations will have a unique solution.

11 5
if 1 2 3al#0
1 3 a
1 1 )
ie 01 3a-5/#0,byR, > R, -R;,R; > R; - R,
’ 02 a-5
11 S
ie, iflo0 1 3a-5[#0,byR; >R;-2R,
0 0 -5a+5
i.e., if -5a+5=#0ie.,ifa=1

Mathematics

: Paper III

o given equations will have a unique solution when a # 1 and b has any value

When a = 1,
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>

1]
— =
w N =
= W u

~l0 1 -2|,byR, >R, -R,,R; >R; -R,

~l0 1 2 b-6|,byR, >R, -R,,R; >R, -R,
02 -4 -5

1 1 5 6
0 0 0 -2b+7

7
Rank of [A B] is 3 if b¢§

rank of A and [A B] are not equal if b ;«tg
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if a = 1, b;&%, the given set of equations does not have any solution. If

7
a=1Lb= 5 then the ranks of A and [A B] are equal and A is singular.

the given system of equations has an infinite number of solutions.
V. Self Check Exercise

1. Determine the value of A so that the equations

2x+y+2z=0
x+y+3z=0

4x+3y+rz=0

have non-zero solution.

-1 2 1]|x
2. For what value of A, does the system | 3 -1 2||y|=0 has (i) a unique
0 1 Al|z

solution (ii) more than one solution.
3. Solve the following equations :

X+y+z=0

X+2y+3z=0
X+3y+4z=0
4. Show that the equations

X+y+z+3=0
3x+y-2z+2=0

2x+4y+7z-7=0

are inconsistent.
5. Solve the equations

X-y+2z=95
2x+y-z=-2

3x-y-z=-7
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6. Examine the consistency of the following equations and if consistent,
find the complete solution

4x -2y +6z=28
X+y-3z=-1

15x -3y +9z =21
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VECTOR SPACES-I

Objectives
I. Vector Space (An Introduction)
II. Subspaces

III1. Sum of Subspaces
IV. Linear Span
V. Self Check Exercise

5.1 Vector Space (An Introduction)

Definition : Let < V, + > be an abelian group and <F, +, . > be a field. Define a
function (called scalar multiplication) from F x V>V, s.t., forallae F,veV,a.v e

V. Then V is said to form a vector space over F if for allx, y € V, a, B € F, the following
hold

(1) (o + B) x =ax + Bx

(ii) ax+y)=ox+ay

(ii)  (ap) x = a (Bx)

(iv) 1.x=x, 1 being unity of F.

Also then, members of F are called scalars and those of V are called vectors.
Remark : We have used the same symbol + for the two different binary
compositions of V and F, for convenience. Similarly same symbol, is used for scalar
multiplication and product of the field F.

Since < V, + > is group, its identity element is denoted by 0. Similarly the field F
would also have zero element which will also be represented by O.

Theorem 1 : In any vector space V(F) the following results hold

(i) 0.x=0

(i) «0=0

(iii) (~a) x = - (0x) = a(-x)

(iv) (o-B)x=0x-Px,a,peF,xeV
Proof : (i) 0.x=(0+0).x=0.x+0.x

= 0+0x=0x+0x
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= 0 = 0.x (cancellation in V)

(ii) a.0=0.(0+0)=0.0+0.0=>0.0=0
(i) (o)x+ox=[-a)+a]x=0x=0

= (-ox) = —ox

(iv) follows from above.

Example 1 : Let < F, +, . > be a field
Let V={a,a,)]| a,a,cF}
Define + and . (scalar multiplication) by
(o, ) + (By, By) = (o, + By, 0+ B
a(a,. a,) = (ao,, aa,)
One can check that all conditions in the definition are satisfied. Here V= F x F = F2,
One can extend this to F°and so on. In general we can take n-tuple (a,, a,,...,a ); o

n 1

€ F and define F*or F® = {(a, a,, ...., @) | a, € F} as a Vector space over F.
Example 2 : Let V = set of all real valued continuous functions defined on
[0, 1]. Then V forms a vector space over the field R of reals under addition and
scalar multiplication defined by

(f+g) x=1fx)+glx)f,geV

(af)x=0f(x) aeR

for all x € [0, 1]
It may be recalled here that sum of two continuous functions is continuous and
scalar multiple of a continuous function is continuous.
Example 3 : The set F [x] of all polynomials over a field F in an indeterminate x
forms a vector space over F w.r.t, the usual addition of polynomials and the scalar
multiplication defined by:
For f(x)=a,+ax+..+ax"eF[x],aecF
a. (f(x) =aa,+ aax+ ..+ aax"

Example 4 : M__ (F), the set of all m x n matrices with entries from a field F forms

a vector space under addition and scalar multiplication of matrices.
We use the notation M_(F) for M__ (F).
Example 5 : Let F be a field and X a non empty set.
Let F*= {f|f: X — F}, the set of all mappings from X to F. Then F*forms a vector space
over F under addition and scalar multiplication defined as follows:
For f,geF5 aeF
Define f+ g: X > F, aF : X —,F such that
(f+g) (® =f(x) + gx
(of) (x) = af(x) VxeX
Example 6 : Let V be the set of all vectors in three dimensional space. Addition

in V is taken as the usual addition of vectors in geometry and scalar multiplication



B.A. Part-I 3 Mathematics : Paper III

is defined as :
o€ R, VeV = av is a vector in V with magnitude |a| times that of V. Then V forms a

vector space over R.
II. Subspaces
Definition : A non empty subset W of a vector space V(F) is said to form a subspace

of V if W forms a vector space under the operations of V.
Theorem 2 : A necessary and sufficient condition for a non empty subset W of a
vector space V(F) to be a subspace is that W is closed under addition and scalar
multiplication.
Proof : If W is a subspace, the result follows by definition.
Conversely, let W be closed under addition and scalar multiplication
Let x,y,eWsince | eF,-1¢F
L-1l,yeW=-yeW
X, yVeW=x-yeW
= < W, + > forms a subgroup of < V, + >.
Rest of the conditions in the definition follow trivially.
Theorem 3 : A non empty subset W of a vector space V(F) is a subspace of V if ax
+ByeWfora,BeF, x,yeW.
Proof : If W is a subspace, result follows by definition.
Conversely, let given condition hold in W.
Let x, y € W be any elements. Since Il € F
. x+lLLy=x+yeW
= W is closed under addition.
Again, x € W, a € F then
ox=0x + 0.y foranyy e W,0 e F
which is in W. (Note here O may not be in W)
Hence W is closed under scalar multiplication.
The result thus follows by previous theorem.

Remark : V and {0} will be trivial subspaces of any vector space V(F).

Example 1 : Consider the vector space R*(R)
then W, ={a, 0) | aeR}
W,={0,Db) | beR}
are subspaces of R?
As for any a, B € R, (a,, 0), (a,, 0) € W, we find
a(a,, 0) + B (a,, 0) = (aa,, 0) + (Ba,, 0)
= (aa, + Ba,, 0) e W,.
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Hence W is a subspace. Similarly we can show W, is a subspace of R

Problem 1 : Show that union of two subspaces may not be a subspace.

Solution : Consider the previous example.

W, U W, will be the set containing all pairs of the type (a, 0), (O, b)
In particular (1, 0), (0, 1) e W, U W,

But

(1,0)+ (0, 1) = (1, 1) ¢ W,UW,.

Hence W U W, is not a subspace.

Reader is referred to exercises for more results pertaining to intersection and union

of subspaces.

We take up few more examples of subspaces.

Problem 2 : Let S = {(1, 4), (0, 3)! be a subset of R*(R). Show that (2, 3) belongs to

L(S).

Solution: (2, 3) € L(S) if it can be put as a linear combination of (1, 4) and (0, 3).

Now

Hence

(2, 3) = Oc(l, 4)+B(0,3)
=(2,3)=(a+0,40 +3p)
=2=0,40+3p=3

S
>a=2,3=-—
o B 3

(2,3):2(1,4)-%(0,3)

Showing that (2,3) e L(S).

Problem 3 : Let V = R*R0 and let S = {(2, 0, 0, 1), (-1, 0, 1, 0)}. Find L (S).

Solution : Any element (o, 0y, 03,04 ) € L(S)is a linear combination of members of

S.

Let
then

i.e.,

(01,05, 03, 04 ) =(2,0,01) +B(-1,0,1,0), a,p e R

((11,(XQ,GS,G4)=(QQ—B,O,B,(X)

L(S)={(20.— B, 0,B,a) | 0, p € R}

Problem 4 : Show that the vector F[x] is not finite dimensional.

Solution : Let V = F[x] and suppose it is finite dimensional.
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Then 3IScV,s.t, V=L(SO and S is finite.
Suppose S = {p,, P,,---, P, }. We can assume p, = 0 Vi

Let deg p; =1 and let t = Max {rl,rg,..., rk}

Now x""! eV and since V = L(S),

r+l
X =0yp; +0yPy +. Oy Dy, 05 €F

So 0=(-1)x"" + ayp; +... + oy Py

Since x™! does not appear in p, p,,.-., P,
we get —1 = 0, a contradiction. Hence V is not FDVS over F.
Note if S = {1, x, ..., x",...} then V = L(S).
Example 2 : Let V = R [x] and suppose W = {f(x) € V |f(x) = f(1 - x)}
Then W is a subspace of V as
W %= ¢ since O e W as f(x) = 0 = f(1 - x)
Again, if f(x), g(x) € W, then f(x) = f (1 - x), g(x) = g(1 - x)
Let f(x) + g(x) = h(x)
Then h(l -x) =1f(1 -x) + g(l - x)
= f(x) + g(x) = h (x)
= h(x) € W or that f(x) + g(x) ¢ W
Again, for a € R, let af(x) = r(x)
Then r(l-x)=oaf (1 -x) =af(x) = r(x)
= r(x) e W=oaf(x) e W
Hence W is a subspace.
Example 3 : Let V = F¥(see example 7) and suppose Y c X
Then W={ eV |fly) =0 Vy €y}is a subspace of V

Clearly O e W and for f, g e W, f (y) = 0 = g(y) VyeY
So (f+g)(y)=fly) +8y)=0 VyeY
= f+geWw
Again, if a € F, then (of) y = a(f(y)) = O VyeY
= ofeW.
Example 4 : If V = R", then
W =i{x, X, ..., x ) | x,+x,+ ... +x = 1} will not be subspace of V.

Notice, (1, 0,0, ..., 0) + (0, 1,0, ..., 0) = (1, 1, 0, ..., 0) ¢ W.
Example 5 : Let V=M__ (F). Let A be a 2 x 2 matrix over F.

2x1

Then W= {[Xl} eV| A{Xl} = O} forms a subspace of V
b

: Paper III
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0
W;t(])as{ :|€W
0
X y
For [ 1},{ 1} in W, we have
Xo] LY2

X1 X1 X1
Also Al a X, =0A X, =0=a X, eW

Hence W is a subspace of V.
III. Sum of Subspaces

If W and W, be two subspaces of a vector space V(F) then we define
W +W,={w+w,|weW,w,eW;
W +W,29pas 0=0+0eW +W,

Again, X,y €e W, + W, a, B € F implies

X=W1"'W2

Yy =W, +W, w, w; € W, wy, wy e W,

cxx+[3y:oc(w1 +w2)+[3(w'1 +w'2)

:(ow)1 +[3w'1)+(aw2 +Bwé)eW1 + W,

Showing thereby that sum of two subspaces is a subspace.
One can extend the definition, similarly, to the sum of n subspaces W, W,,...,.W ,

n

which would also be a subspace and we write W, + W, +...+ W = ZW .
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Definition : Let W, W ,..., W_be subspaces of V then W + W_+...+W_is called the

direct sum if each x e W + W, + ... + W_can be expressed uniquely as

X=W; +Wy +...+ W, ,w; €W, and in that case we write

W +W, +...+ W, =W, W, .. W,
We say, a vector space V is the direct sum of its subspaces W, W,,..., W_if
V=W, &W,®..&W,_, ie.,if
V=W +W,+.. +W_
and each v € V can be expressed uniquely as v=w +w,+ ... + w , w, e W,

Theorem 4 : V=W, ®W, < V=W, + W,W, "W, =(0).

Proof : LetvV=W, ®W,

We need to prove W, nW, = (0)
Letx e W nW,, thenx e W and x e W,
= x=0+xeW +W,=V
= x=x+0eW +W,=V
Since x has been expressed as x = x + 0 and O + x and the representation has to be
unique, we get x = 0
= W, nW,=(0).
Conversely, let v € V be any element and suppose
V=W tw,
V=W, +W,

are two representation of v
then Wi+ Wy =Wy + W, (=V)

Now L.H.S. is in W and R.H.S. belongs to W,
i.e., each belongs to W n W, = (0)

= W, =W; =Wy —W, =0
= Wl =W1, W2 =W2.

Hence the result.

Remark: The above theorem can also be stated as
W +W, =W, @W, W, "W, :{O}.

If W be a subspace of a vector space V(F) then since <W, +> forms an abelian group
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\Y
of <V, + >, we can talk of cosets of Win V. Let W be the set of all cosets W+ v, veV,

\Y
then we show that W also forms a vector space over F, under the operations defined

by

(WHx)+ (WHy) =W+ (x+y)

o(W+x)=W+ax aekF

Addition is well defined, since,

=

=

W+x=W+x
W+y=W+y
XxX-X eW,y-y W

(x-x)+(y-y)eW
(x+y)-(x+y)eW
WH(x+y)=W+(x+y')
W+x=W+x'

x-x'eW

a(x-x')eW oaeF
ox —ax'e W
W+ox=W+ox'

oa(W+x)=a(W+x')

X, yeV

Thus, scalar multiplication is also well defined. It should now be a routine exercise

to check that all conditions in the definition of a vector space are satisfied.

W + O will be zero of l
W

W - x will be inverse of W + x

IV. Linear Span

Definition : Let V(F) be a vector space, v;eV,q; eFbe elements of V and F

n
respectively. Then elements of the type Zaivi are called linear combinations of

vy,Vy,...,v, over F.

i=1



B.A. Part-I 9 Mathematics : Paper III

Let S be a non empty subset of V, then the set
n
L(S) = {Z o;v; |a; eF,v; eS,n ﬁnite}
i=1

i.e., the set of all linear combinations of finite sets of elements of S is called linear
span of S. It is also denoted by <S>. If S = ¢, define L(S) = {0}.

Theorem 5 : L(S) is the smallest subspace of V, containing S.
Proof : L(S)#pasveS=v=1.v,1eF
=v el (S)
thus, in fact, Sc L(S).

Let X,y € L(S), a,p € F be any elements

then x=o04v;+0,v,+...+0,V,

Y=PBivi +BoVy + o+ BV Vi, V5 €S, 04, B €F

Thus ax + By = 0oV, + 00,V + ... + 00V, + BBVy + oo+ BBy V-

R.H.S. being a linear combination belongs to L(S)
Hence L(S) is a subspace of V, containing S.

Let now W be any subspace of V, containing S
We show L(S) c W

XEL(S)SX'=ZaiVi vieS,a;eF
v; e Sc W for all i and W is a subspace
=Y av;eW=xeW

— L(S)c W
Hence the result follows.
Theorem 6 : If W is a subspace of V, then L(W) = W and conversely.

Proof : W c L(W) by definition and sine L(W) is the smallest subspace of V containing
W and W is itself a subspace

LW)cW
Henc L(W)=W.
Conversely, let L(W) = W
Let x,yeW,a,BeF

Then X,y € L(W)
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X, y are linear combinations of members of W.

ox + By is a linear combination of members of W

ax + By € L(W)

ox + By e W

W is a subspace.

Definition : If V = L(S), we say S spans (or generates) V. The vector space V is said
to be finite-dimensional (over F) if there exists a finite subset S of V such that V=1

R

(S). We use notation F.D.V.S. for a finite dimensional vector space.
It now follows from the results we've proved that

If S and S,are two subspaces of V, then S, + S, is the subspace spanned by S; US,
Indeed, L(S,US,)=L(S;)+L(S,)=S,+8S,.

V. Self Check Exercise :
1. Let a, = (1, 1, -2, 1), a,= (3, 0, 4, -1), a,=(-1, 2, 5, 2). Show that the
vector (4, -5, 9, -7) is spanned by a,, a,, a,.
2. If S spans V then show that every super set of S spans V.
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I. Linear Dependence and Independence
II. Basis and Dimensions
III. Self Check Exercise

I. Linear Dependence and Independence

Let V(F) be a vector space. Elements v , v,,..., v_in V are said to be linearly dependent

(over F) if 3 scalars oy, dy,...a, €F, (not all zero) such that

04V + agVy +...o, v, =0

(v,, V,, ..., v_are finite in number, not essentially distinct).

1’ "2

Thus for linear dependence Zaivi =0 and at least one o; #0.

If v, v,...v_are not linearly dependent (L.D.) these are called linearly independent
(L.I.).
In other words, v, v,,..., v_are L.I. if

Z(xivi =0=q;=0foralli

A finite set X = {Xl, Xgeen xn}iS said to be L.D. or L.I. according as its n members are

L.D. or L.I.
In general anysubset Y of V (F) is called L.I. if every finite non empty subset of Y is
L.I. otherwise it is called L.D.
So, if some subsets are L.I. and some are L.D. then Y is called L.D.
Observations : (i) A non zero vector is always L.I. as v # 0, av = 0 would mean a =
0.

(ii) Zero vector is always L.D.

1.0=0 1#0,1eF

Thus any collection of vectors to which zero belongs is always L.D.
In other words, if v, v,, ..., v_are L.I. then none of these can be zero.

(iii) vis L.I.iff v#0.

(iv) Any subset of a L.I. set is L.I.

11
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(v) Any super set of a L.D. set is L.D.
(vi) Empty set ¢ is L.I. since it has no non empty finite subset and

consequently it satisfies the condition for linear independence.
(vii) A set of vector is L.I. if and only if every finite subset of it is L.I.

Example 1 : Consider R*R), R = reals.
v; =(1,0),v, =(0,1)eR* are LL
as o4Vy +0,vy =0 for oy, a, € R
= 0, (1,0)+a,(0,1)=(0,0)
= (ay,05)=(0,0)= 0, =0, =0.

Example 2 : Consider the subset
S ={1,0,0),(0,1,0),(0,o0,1),(23,4)}
in the vector space R3(R)
Since 2(1,0,0)+3(0,1,0)+4(0,0,1)-1(2,3,4) = (0,0, 0)
we find S is L.D.
Example 3 : In the vector space F[x] of polynomials the vectors f(x) = 1 - x,
g(x) = x — x2, h(x) = 1 — x?2are L.D. since f(x) + g(x) - h(x) = 0.
Problem 1 : Show that the vectors v,= (0, 1, -2) v, = (1, -1, 1), v,= (1, 2, 1) are L.L
in R*(R).
Solution : Let ) o;v; =0foro; eR
Then o, (0,1,-2) + a5 (1,-1,1) + 03 (1,2,1) =(0,0,0)
= (O, (X’l’ - 2(11) + ((XQ,_G,Q, (12) + ((1,3, 2&3, G‘S) = (0,0,0)
=0+a,+a3=0
oy — 0y +203 =0

—204 + 0y +03=0

0O 1 1
Since the coefficient determinant |1 -1 2| is -6 # 0 the above equations have
-2 1 1

only the zero common solution

= o, =0, =03 =0=v,,v,,v, are L.I.
1 2 3 1»V2,V3
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Problem 2 : Show that {f(x), g(x), h(x)} is L.I. in F[x], whenever. deg f(x), deg g(x),
deg h(x) are distinct.

Solution : Let f(x)=ap+a;x+..+a,x",a, #0

m m
g(x)=by +byx+...+ b, x", b, #0
hx)=cy, +c;x+...+¢,x",¢c; 0

Let of (x)+pg(x)+vh(x)=0,a,B,yeF

Let m < n < t (without any loss of generality)

then yC;=0=y=0asc, =20
of (x) +Bg (x) =0

and so Bb, =0=p=0asb, #0

> of(x)=0=>aa,=0=>a=0asa, #0
Hence {f(x), g(x), h(x)} is L.I. in F[x] over F.
Problem 3 : Show that the vectors
v,=(1,1,2,4),v,=(2,-1,-5,2),v,=(1,-1,-4,0) and v,= (2, 1, 1, 6) are L.D.
in R*(R).

Solution : Suppose av; +bv, +cv; +dv, =0,a,b,c,d e R

then a(l, 1,2, 4) +b (2, -1, -5, 2)
+c(l,-1,-4,0)+d (2,1, 1,6)=(0,0,0,0)
or (a, a, 2a, 4a) + (2b, —-b, —=Sb, 2b) + (¢, —c, —4c, 0)
+(2d, d, d, 6d) = (0, 0, 0, 0)
= at+t2b+c+2d=0

a-b-c+d=0
2a-5b-4c+d=0
4a +2b+0c+6d=0

1 2 1 2||la 0
- 1 -1 -1 1||b _ 0
2 -5 -4 1||c 0
4 2 0 6||d 0

R, >R, -R,,R; > R; -2R,,R, > R, —4R,
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1 2 1 2||a 0
0 -3 2 -1||b| |0
0 -3 2 -1l|c| |0
0 -3 -2 -1/|d| |o
Ry —>%R4,R3 —>le

1
0
0 -1 -2/3 -1/3
0 -3/4 -1 -1/2

o O O O

R, >R, -R,,R; > R; —R,

1 2 1 2||a 0
0 -3 -2 -1/|b| |0
0 0 0 o0llc| |o
0o 0 o olld| |o

=>a+2b+c+2d=0

-3b-2c+d=0
3b+2c+d=0
a=-1,b=-1,c=1,d =1 satisfy the equations.
Since coefficients are non zero, the given vectors are L.D.
Problem 4 : Show that

(i) {1, \/5} is L.Iin R over Q.
(i)  {L+2,¥3} is L.Iin R over Q.
(i)  {1Lv2,43,4/6} is L.Iin R over Q.

Solution : (i) Suppose a+by2=0, a,beQ

: Paper III
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a
Suppose b =0, then J2 = 5 € Q, a contradiction

Hence b = 0 and so a = 0. Thus {1,\/5} is L.I. in R over Q.

(ii) Let a +by2 +c/3=0,2a,b,ceQ
Let ¢ # 0, then

\/_:_E_%\/E:Q+B\/§,OLBEQ

C
= 3=0 +af? +20pV2

= op2eQ=ap=0

3
Let o = O then B= 5@ contradiction

So, ¢ = 0 giving a+by/3=0=a=b=0Dby (i)
Hence the result follows.

(111) Let a+b\/§+0\/§+d\/g=0, a, b7 c, de Q
Then (a+bﬁ)+J§(c+dJ§)=o

Let c+d2 #0

_—(a+b\/§)_—(a+b\/§)(c—d\/§)
Then \/§_ (c+d\/§) - c2 _0d?

=a+p2,  opeQ
= a.1+BV2 +(-1)4/3 =0

= -1 = 0 by (ii), a contradiction
.'.c+d\/§:0:c:d:03a+b\/§:0
=a=b=0

Hence the result follows.

Problem 5 : If two vectors are L.D. then one of them is scalar multiple of the

other.
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Solution : Suppose v, v, are L.D. then 3o, € F, s.t.,
04V; +0,V, =0 for some o; #0

without loss of generality we can take a; #0 , then oj'exists and o,v; =(-0,v,)

- -1 -
=Vi= (—0‘1 0‘2)‘72 =P,

which proves the result.
Probelm 6 : If x, y, z are L.I. over the find C of complex.nos. then so are

X +y+ zand z + x over C.
Solution : Suppose o, (x+y)+o0,(y+2z)+0ay(z+x)=0,0;€C
Then (o +ag)x+(oy +0y)y+(0y +a3)z=0
oy +0g =0y +0, =0, +0az =0as x,y,x are L.I.
Solving we find
oy =0y =03 =0
Hence the result.
II. Basis and Dimensions
Note : We have already showed that (1, 0) and (0, 1) are L.I. in R?{R). If
v =(a,b) eR?be any element then since (a, b) = a(1, 0), a, b € R
We find any element of R? can be written as a linear combination of
{(1,0), (0, 1)} =S

ie., veR’=vel(S)
= R? cL(S)
But L(S)cR?

ie., R’cL(S)

or the S spans R2
Definition : Let V(F) be a vector space. A subset S of V is called a basis of V if S
consists of L.I. elements (i.e., any finite number of elements in S are L.I.) and V =
L(X), i.e, S spans V.
Therefore, S = {(1, 0),(0, 1)} is a basis of R?(R). It is rather easy to see then that {(1, O,
0).(0, 0, 1)} will form basis of R3}(R), and one can trivially extends this to R®,
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Again {(1, 1, 0), (1, 0, 0),(0, 1, 1)} also forms a basis of R}(R). (Show !) Thus a vector
space may have more than one basis.

If the elements in a basis are written in a certain specific order, we call it ordered
basis. Also {(1, 0).(0, 1)}{(1, 0, 0),(0, 1, 0),(0, O, 1)} etc. are called standard basis of R?,
R3 etc. Also ¢ is a basis for V = {0}.

Problem 7 : Show that the set S= {(1, 2, 1),(2, 1, 0),(1, -1, 2)} form a basis of R3(R).
Solution : Let

o;(L,2,1)+ay5(2,1,0) +as(1,-1,2)=(0,0,0,)0; €R

= (o, + 20, + 03,204 + 0y — 03,01 + 0+ 205) =(0,0,0)
=0y +20, +0a3 =0

204 +oy 053 =0

o; +0+205 =0

1 2 1 (o 0
In matrix form, we get 2 1 -1jloy|=|0
1 0 2|las| |O

i.e. AX =0

where |[A| =-9 %0
So A is a non singular matrix and thus AX = 0 has the unique zero solution
o =0y =0a3=0.
Hence S is L.I. set
Again, to show that L(S) = R?, let (a, b, ¢) € R® be any element. We want that (a, b, c)
= Bl (17 2’ 1) + Bg (2’ 1, O) + B3 (17 ']-a _2) for same B1’B2’B3e R
i.e., we want some B, € R s.t., the equations

B, +2b, +B; =a
2B, +By-Bs=b

Pr+ 0By —2B3 =c

are satisfied i.e, in matrix form

1 2 1 a
AX = B where A=2 1 -1,,B=b
1 0 2 c
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Since |A| = -9 # 0, AX = B has a unique solution i.e, 3 some f, s.t., above equation
are satisfied or that it is possible to express any (a, b, ¢) € R® as a linear combination
members of S . i.e, L(S) = R®

Hence S forms a basis of R3R).

Theorem 1 : If S={v,,v,,...v,}is basis of V, thenf every element of V can be

expressed uniquely as a linear combination of v;,v,,.....v, .
Proof : Since, by definition of basis, V = L(S), each element v € V can be expressed

as linear combination of v;,v,,.....v,.

Suppose V=04V] + 0yVy +..... +a,v,,o; €F

vV =B1v; + By .. +BuVy,B; €F

then oyvy + 0,V +.ooo+ o, vy =BV +Bovy + o+ Bovy

:>((11—Bl)v1+(a2—[32)v2+ ..... +(ay —By)v, =0
=a; —f; =0 for all i(vy,Vy,....vjareLL)

=0y =p; for alli.

Theorme 2 : Suppose S is a finite subset of a vector space V such that V = L(S)
[i.e., Vis F.D.V.S] then there exists a subset of S which is a basis of V.
Proof : If S consists of L.I. elements then S itself forms basis of V and we've nothing

to prove.
Let now T be a subset of S, such that T spans V and T is such minimal subset of S.
(Existence of T is ensured as S is finite).

Suppose T={v,,Vy,....... Va !

we show T is L.I.

Let Zaivi =0,a; €F

Suppose «a; # 0 for some i. Without any loss of generality we can take o; 20 .

1 exists.

Then o
Now  oyvy+a,v,y +..... +a,v

=a; (oqvy + 0V + .ot oV, ) =0
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=>vV, = (—al"lch)vQ + (—a;1a3)v3 + ...+(—oc1" ocn)vn

=Byvy +P3Vs +..nn. +B,v, By eF
If v eVvbe any element then

V=7V +YoVa +..7,V, 13 €F as V=L(T)

=>v=y ([32V2 +.en + ann) +YoVy + .o ¥uVy
i.e., any element of V is a linear combination of v, v, ....v_

= {VQ,VS, ..... Vn} spans V, which contradicts our choice of T(as T was such minimal)

Hence a, =0
or that a, = 0 for all i

= Vy,Vy,.....v, are L.L.

and thus T is a basis V.
Cor : A F.D.V.S has a basis.
In fact, one can prove this result for any vector spece.(i.e. any vector space has a

basis).

Theorem 3 : If Vis a F.D.V.S and {VI,VQ, ..... vr} is a L.I. subset of V, then it can be
extended to form a basis of V.

Proof : If {Vl,VQ, ..... Vr} spans V, then it self forms a basis of V and there is nothing
to prove.

Let Sz{vl,vz, ..... Vs Vipgseererens Vn} be the maximal L.I. subset of V, containing

We show S is a basis of V, for which it is enough to prove that S spans V.
Let v € V be any element

then T= {Vl,VQ, ..... Vn,V} is L.D. by choice of S
=3 04,0, o,,a€F (not all zero) such that

O V] + e, +a,v, +av=0
We claim ¢ # 0. Suppose a =0
then oyv; +...+0a,v, =0

= a,; =0 for all i as v,v,,.....v, are L.I.
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~a=a; =0 for all i which is not truie.

Hence ¢ 20 and so g lexists.

Since V= (oc’locl)vl + (oc’loLQ)v2 + ....+(oc’locn)vn

v is a linear combination of v;,v,,.....v

which proves our assertion.
Theorem 4 : IfdimV=nand S= S= {VI,VQ, ..... ,Vn} spans V then S is a basis of V.

Proof : Since dim V = n, any basis of V has n elements. But theorem 8, a subset of

S will be a basis of V but as S contains n elements, it will itself form basis of V.
Theorem 5 : If dim V = n and S={v;,vy,.....,v, } is L.I. subset of V then S is a basis
of V.

Proof : Since {vl,v2, ..... ,Vn} = S is L.I. it can be extended to form a basis of V, but

dim V being n it will itself be a basis of V.
Aliter : Let yc Vv, then

V,Vy,V,,.....v, Wwill be L.D.. Thus 3Ja,0,,0,,...,a, €Fs.t,,
ov +0yV; + oyVy +...+a,v, =0

where some o;or ais not zero.
If o =0, then

04Vy + 0gVy +.+a v, =0

= a; =0Viasvy,v,,...,vyare L.L.

Thus o # 0 and so

=VcL()

=V =L(S) and as Sis L.I. S is a basis of V.
Problem 8 : If {v;,v,,...,v,} is a basis of F.D.V.S V of dim n and v =
Zaivi,ocr # 0 then prove that {Vl,VQ,....,vH,V,VH1 ..... ,vn} is also a basis of V.

Solution : We have
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1

V=0V F..... +o Ve Fa +a,v, o, #0. a exists

(-1 -1 -1 -1
=>v; —(ocr onl)v1 +....+(—ocr ocr_l)vr_1 + o v+...+(—ocr ocn)vn

=BV +. B Ve B VP e BV,
If x € V be any element, then

X=0,V] +0,Vy +... v, o; €F
=X =0V Feee+ 0V 0 BV o+ BV, ) e+ ag vy
or that x is a linear combination of

Ve Vo1 Vo Vil oo Vi

and x being any element, we find V is spanned by {Vl,....,Vr_l,v,vrﬂ,....vn} and it

forms a basis of V, using theorem done above.

Theorem 6 : Two finite dimensional vector spaces over F are isomorphic iff they
have the same dimension.

Proof : Let V and W be two isomorphic vector spaces over F and let 8 : V> W be

the isomorphism.

Let dim V = n and {Vl,vg,...,vn} be a basis of V.
We claim {0(v,),0(v;),...,0(v,)}is basis of W.

n

Now Zaie(vi)=o a,eF
i1

= > 0(a;v;)=0=6(0)
=Y ov;=0 (0is1-1)
=o; =0 for allias v;,v,,....,v, are L.I.

=0(v,),0(v3),....,0(v,) are L.I.

Again, we w € W is any element, then as 0 is onto, 3 some v € V s.t., O(v) = w

n
Now VEV=V=3aV; for some a;eF
i=1

= w=0(V)=0(> o;v;)
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='w=>0(ov;)=0a;0(vy)+,0(vy)+.... +a,0(vy)
or that w is a linear combination of 8(v,),0(v,),....,0(v,)
Hence 0(v;),0(v,),....,6(v,) span W and therefore, form a basis of W showing that
dim W =n.

Connersely, let dim V = dim W = n and suppose, {Vl,VQ,....,Vn} and {WI,WQ,....,WH}

are basis of V and W respectively.
Define amap 6 : V > W s.t.,
0(v)= 9(a1V1 +0yVy + .t anvn)

Wy + OyWy + .o + 0 W

then 0 is easily seen to be well defined. (Indeed any v € V is unique linear combination
of members of basis).

If v,v'eV be any elements then
v=>av,v'=)Bv; «;,B;eF
O(v+v')=0( av; + Y Bv;)

=0(2 (asBi)vi)

= 2 (0 +B)w;

=D Wi + Y Byw; = 6(v) +6(v))
Also  0(av)=0(c) o;v;)=0(Y aazv;) =Y (a0 )w;

ocz o;W; = 08(v)

Thus 0 is a homomorphism
Now if v € Ker 0
then 0v) =0

= o, =0 for all i wy,w,,....,w,being L.I.

=>v=0
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= Ker 0 = {0}
= 0 is one-one.
That 6 is onto is obvious. Hence 0 is an isomorphism.
Problem 9 : (1, 1, 1) is L.I. vector in R?(R) Extend it to form a basis of R3.
Solution : (1, 1, 1) is non zero vector and it therefore L.I. in R3.
Let S = {(1, 1, 1)}, then L(S) = {a(1, 1, 1)a € R}
Now (1, 0, 0) € R?, but (1, 0, 0) ¢ L(S)

thus by above proble S, = {(1,1,1),(1,0,0)} is L.
Now L(s,)={a(1,1,1)+p(1,0,0)|o,p R}

= {((1+B,(1,—(X)—(X,B€R}
Again (0, 1, 0) ¢ L(S)) and by above problem
S, =1{(1, 1, 1),(1, 0, 0),(0, 1, 0); is L.I. subset of R®.
Since dim R® = 3, we find S, will be a basis of R®.
Theorem 7 : Let W be a subspace of a F.D.V.S. V, then W is finite dimensional
and dim W < dim V. In fact, dim V = dim W iff V = W.
Proof : Let dim V = n, then n is maximum number of L.I. elements in any subset of

V. Since any subset of W will be a subset of V, n is the maximum number of L.I.
elements in W.

Letw, w,,..... ,W_ be the maximum number of L.I. elements in W hten m < n.
We show {w, w,,..... ,W_} is basis of W. These are already L.I. If w € W be any element
then the set {w, w,,..... ,W_, w}is L.D.

S3a, 0y, e a_,ain F (not all zero) s.t.,

LW, +.... o W +oaw =0

If =0 we get o; =0for all i as wy,...,w,, are L.I. which is not true. Thus ¢ 0 and

m
so g lexists.
The above equation then gives us

(-1 -1
w = (—a ocl)wl +...+(—oc ocm)wm

Showing that {wl,w2,....,wm} spans W (and thus W is finite dimensional)

= {Wl,WQ,....,Wm} is a basis of W

=>dimW=m<n=dimV
Finally, if dim V = dim W = n
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and {wl,w2,....,wm} be a basis of W then as {WI,WQ,.

V. and as dim V = n, {Wl,wz,....,wn}is a basis of V.

Now if v € V be any element then
=S V=W +0Wy +.. o, W, €W

>VcW=V=W

Mathematics : Paper III

..., W, }is L.I. in W it will be L.I. in

Conversely, of course, V=W = dim V = dim W.

Theorem 8 : Let W be a subspace of a F.D.V.S.

diml =dimV -dimW ,
AW

extended to form a basis of V.

V. Then

Let {WI,WQ, ..... ,wm,vl,vg,...,vn} be this extended basis of V.

Then dimV=n+m

\Y
Consider the set S= {W+V1,W+V2, ..... ,W+Vn} , we show if forms a basis of W

Let o (WHvy)+.+o, (WH+v,)=W, 0 €F

Then W (ogvy + et 0, vy ) =W

=S oV +.a..to v, eW

= 04Vy + .. +a,v, is a linear combination of w ,...., w

m

= oV e+ oV, =Wy L+ B Wy B e F

= a; =p;=0for alli, j.

:>{W+V1,W+V2, ..... ,W+Vn} is L.1I.

Again, for any W +v e l, v e vmeans v is a linear combination of w ,..., w_, v
W

V.

17 n

ie., v=ouW; +..+ 0y Wy +Bvy 4.+ BV, oy, B eF
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8IVING W+ v =W+ (oW +... + 0y Wy ) + (Byvy +.o+ BV )
=W+ (Byvy +... +Bovy)
=(W+Bvy)+..+(W+B,v,)

=B (W+v;)+ By (WHvy) ..+ By (W+vy).

Hence S spans % and is therefore a basis.

Thus dim % =dim V -dim W.

Theorem 9 : If A and B are twosubspaces of a F.D.V.S. V then
dim (A + B) =dim A +dim B-dim (A N B).
Proof : We'ave already proved that

A+B_ B
A ANnB

dim 2B _ dim
A

ANnB
= dim(A+B)—dimA:dimB—dim(AmB)

or that dim (A +B)=dim A +dimB -dim(A nB).

Paper III

Remark : The reader should try to give an independent proof of the above theorem

as an exercise.
Cor. : If A~ B = (0) then dim (A + B) = dim A + dim B

i.e., dim (A® B) = dim A + dim B.
III. Self Check Exercise
1. Show that the following vectors are L.I.
(i) (1, 0,0), (1, 1, 1), (1, 2, 3), in R¥(R)
(i) (1, 2, -1), (2, 2, 1), (1, -2, 3) in R}(R)
2. Show that the following vectors are L.D.

(1) (17 17 2)’ (_37 ]-7 O)> (1a _1, ]-), (1, 2, _3) in R3 (R)
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(ii) (1, 1, 2), (1, 2, 5), (5, 3, 4) in R*(R)

Show that {1, i} forms a basis of C (R).

Extend the set S = {(1, 1, 0)} to form two different bases of R*(R).

Let S be a finite subset of a vector space V such that S is L.I. and
every proper superset of S in V is L.D. Show that S is a basis of V.

If W and W, are subspaces of R*and {(1, O, O, 0), (1, 1, 0, 0), (1, 1, 1,
0)}, {(0, 0, 0, 1), (0, O, 1, 1), (O, 1, 1, 1)} are bases of W and W,
respectively, find a basis of W, " W,.

Let V be a vector space over F. Assume that every linearly independent
set in V can be extended to a basis of V. Deduce that V has a basis.
Let F be a field. Let A= {x,y,0) | x,y, € F};, B={0,y, 2 | y, z € F} be
subspaces of F3(F). Find dimension of the subspace A + B.
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LINEAR TRANSFORMATIONS-I

Objectives
I. Linear Transformations (An Introduction)
II. Rank and Nullity of a Linear Transformation

III. Self Check Exercise

I. Linear Transformations (An Introduction)
Definition : Let V and U be two vector spaces over the same field F, then a
mapping T : V - U is called a homomorphism or a linear transformation if
Tx+y)=Tx) + T(y) forallx,y e V
T(ox) = aT(x) a € F
One can combine the two conditions to get a single condition
T(ax +py)=aT(x)+BT(y) x,yeV;a,peF
It is easy to see that both are equivalent. If a homomorphism happens to be one-
one onto also we call it an isomorphism, and say the two spaces are isomorphic.
(Notation V=U).

Example 1 : Identity map I[:V->V,st.,
I(v) =v

and the zero map O:V-5V,sit.,
O(v) =0

are clearly linear transformations.

Example 2 : For a field F, consider the vector spaces F?and F®. Define a map
T:F® 5> F2, by
T(o,B,v)=(c,B)
then T is a linear transformation as

for any x,yeFS,if X:(%,th)

27
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y =(a2,B2,72)

then T(x+y)=T(oy+ay,B;+Bs 71 +72)=(0 +0s, B +By)
= (o, By ) + (o0, By ) = T(x) + T(y)

and  T(ax)="T(a(ay,By,7))="T(ca, apy, ay,)

= (aay, ofy) = a(ay, B;) = oT(x)
Example 3 : Let V be the vector space of all polynomials in x over a field F. Define
T:V->V,st,

T(af) = C%((ocf) - a%f - oT(f)

shows that T is a linear transformation.
In fact if 9:V — V be defined such that

0(f) = [ f(t) dt

0
then 0 will also be a linear transformation.

Example 4 : Consider the mapping
T:R® > R, s.t.,

C2 2 2
T(Xl,XQ,Xs)—Xl + X5 + X3

then T is not a linear transformation.
Consider, for instance,

T((1,0,0) +(1,0,0)) =T(2,0,0) =4

T(1,0,0)+T(1,0,0)=1..1=2.

In the following theorems, we take V and U to be vector spaces over the same field.

Theorem 1 : Under a homomorphism T:V - U,
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(i) T(@©O)=0 (i) T(-x) = - T(x).
Proof : T(0) = T(0 + 0) = T(0) + T(0)
= T(0)=0
Again T(—x) + T(x) = T(x + x) = T(0) = 0
= - T(x) = T(-x).
Definition : Let T:V - Ube a homomorphism, then kernel of T is defined by
Ker T ={x e V| T(x) = 0}
It is also called the null space of T.

Theorem 2 : Let T:V — Ube a homomorphism, then Ker T is a subspace of V.

Proof : Ker T#¢,as0eKerT

Let o,feF,x,yeKer T be any elements
then T(ax +By) =aT(x)+pT(y)
=a.0+B.0=0+0=0
= ox + Py eKer T.

Theorem 3 : Let T:V — Ube a homomorphism, then
Ker T = {0} iff T is one-one.
Proof : Let Ker T = {0}. If T(x) = T(y)
then T(x)-T(y) =0

= T(x-y)=0
= (x-y)eKer T ={0}
=>x-y=0

=>x=y=>Tisl-1.

Conversely, let T be one-one
if x € Ker T be any element, then T(x) = 0

- T(x) = T(0)
=x=0
= Ker T ={0}.

Definition : Let T:V — Ube a linear transformation then range of T is defined to
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be
T(V)={T(x)| x e V} =Range T =R
={ueU|u=T(v),veV}

Theorem 4 : Let T:V —»Ube a L.T. (linear transformation) then range of T is

subspace of U.

Proof : Since T(0)=0,0eV
T(0) eRange T
i.e., Range T=#¢

Let o,peF, T(x), T(y) e T(V) be any elements

then X,yeV
Now oT(x)+BT(y) = T (ox +By) € T(V)
as ox+PByeV

Hence the result.
Note: T(V) = U iff T is onto.

Theorem 5 : Let T:V > Ube a L.T. then

~Range T = T(V).
Ker T & V)

Proof : Let T:V » U and put Ker T = K, then K being a subspace of V, we can talk
V/K.
Define a mapping 6:V/K— T(V),s.t.,
0(K+x)=T(x),xeV

Then 60 is well defined, one-one map as
K+x=K+y

ox-yeK=Ker T
< Tx-y)=0
< T(x)=T(y)

<0(K+x)=0(K+y)
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If T (x) € T(V) be any element, then x € V and 06 (K + x) = T(x), showing that 6 is onto
Finally, 6 (K + x) + (K +y)) =6 (K + (x +y))

=Tx+y)

= T(x) + T(y)

=0(K+x)+6(K+y)
and 6((1(K+x)): 0 (K+ax)="T(ax)=0oT(x)=06(K+x)

shows 0 is a L.T. and hence an isomorphism.

Note : The above is called the Fundamental Theorem of homomorphism for vector

\%
space. If the map T is also onto, then we have proved Ker T =U

Theorem 6 : If A and B be two subspaces of a vector space V(F), then

A+B_ B
A ~ANnB’

Proof : A being a subspace of A + B and A n B being a subsapce of B, we can talk

A+B d B

of an .
A ANnB

A+B

Define a map 0:B —» ,s.t.,

0(b)=A+b,beB
Since by =b, = A+b, = A + b,, we find 0 is well defined.
Again, as 0(ab; +Bby ) =A+(ab; +Bb,)
=(A+ab;)+(A+Bb,)
=o(A+by)+B(A+Dby)
=0L6(b1)+B9(b2)

0is a L.T.

For any A+xeA+B

,wefindxeA+B

> x=a+b,acA beB
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A+x=A+(a+b)
=(A+a)+(A+b)=A+(A+D)

=A+b=0(b).
Showing that b is the required pre image of A + x under 6 and thus 0 is onto. Hence

by Fundamental theorem

A+B B

~

A Ker 0’

We claim Ker6=AnNB

Indeed xeKerf < 0(x)=A
SA+x=A
< xeAalsoxeKer6c B

< xeAnB

o A+B_ B
ence A  ANB

Note : By interchanging A and B fBra,_A
: By interchanging A and B, we get —o— =
, A+B_ B
e A AnB

Cor.: If A + B is the direct sum then as AnB={0}

A _AO®B
(o) B

1

we get

A A®B
But —=Agives us AZ B

(0)

A\
Theorem 7 : Let W be a subspace of V, then 3 an onto L.T. 6:V W such that

Ker 0=W.
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Proof : The proof is left as an exercise for the reader.
Theorem 8 : AL.T. T:V — Vis one-one iff T is onto.
Proof : Let T:v — vV be one-one. Let dim V = n.

Let {V},V,,....,V,} be a basis of V, then {T(v;),....., T(v,)} will also be a basis of V as
o, T(vy) +a,T(vy)+.oc. 4+ 0, T(v,,) =0
= T(0qv; +... + 0y, ) = T(0) (Ta LT
= oV +..+o,v, =0(Tis1-1)

=a; =0foralli

thus T(v)), ... T (v,) are L.I. and as dim V = n the result follows (Theorem done
earlier)
Let now v € V be any element

then v=a,T(v;)+a,T(vy)+.....+a,T(v,) a; eF
=T(a;v; +....+a,v,)

=T(v') for some v'

Hence T is onto.
Conversely, let T be onto.

Here again we show that if {Vl,v2,....vn}is a basis of V then so also i

{T(v1), T(v2)50 T(va)}
For any veV,since T is onto, 3 some v'eV s.t.,
T(v)=v
II. Rank and Nullity of a Linear Transformation

Definition : Let T:V—> Whbe a L.T.
then we define Rank of T = dim Range T = r(T)
Nullity of T = dim Ker T = v(T).
Theorem 9 : (Sylvester's Law) : Let T:V - Wbe a L.T., then
Rank T + Nullity T = dim V.

Proof : Let {xl,x2,...,xm} be a basis of Ker T then {xl,x2,...,xm} being L.I. in Ker T

will be L.I: in V. Thus it can be extended to form a basis of V.
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Let {xl,xg,...,xm,vl,v2,....,vn} be the extended basis of V.
Then dim Ker T = nullity of T = m

dimV=m+n
we show {T(v1), T(v2),--» T(va)} is a basis of Range T
Now o, T(vy) +a,T(vy)+.occ 4+ 0, T(v,,) =0

= T(oVy +...+ 0,V ) =0
= 04Vy + 0V, +a,v, eKer T

= oV, et o,V =X e BaXy

or V) + ooV + (B )Xy + e+ (P ) Xy =0
=0 =0y=...=pB; =...=B, =0
ie., {T(v1),T(v),-.; T(vy)} is L.L

Now if T(V) € Range T be any element then as v e V

V= alxl +... +ame +b1V1 +... +ann al,bJ € F
T(v)=a,T(x;)+...+a,T(x,)+b;T(v;)+...+ b, T(v,)

=0+..+0+bT(v;)+...+ b, T(v,) [asx; eKer T]

or that T(v) is a linear combination of T(v ), ..., T(v )
which, therefore, form a basis of Range T.
.. dim Range T =n = rank T
which proves the theorem.
Theorem 10 : If T:V—>Vbe a L.T. Show that the following statements are
equivalent.
(1) Range T n Ker T = {0}
(ii) IfT (T(v)) =0thenT(v)=0,veV
Proof : (i) = (ii)

T(T(v))=0=T(v)eKer T

Also T(v)e Range T (by definition)
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Let x € Range T n Ker T

= x € Range Tand x e Ker T
= x =T(v)for someveV
and T(x) =0

x=T(v)=T(x)= T(T(V))

= 0="T(T(v))
= T(v) = O (given condition)
= v=0.
III. Self Check Exercise
1. Letdim V=n,T: V> VbealL.T. such that Range T = Ker T. show that n is

even. Prove that T : R? > R?, s.t., T(xl,x2) = (x2,0)is such a L.T.

2. Find range, rank, Ker and nullity of the L.T. defined by
() T:R? >R?st, T(x;,%;) = (x, +%5,%,)[R?%,2(0),0]
(ii) T:R* 5> R?s.t., T(xy,X5) =(X; +Xp,X; — X5, X5)
(it) T:R® > R?s.t,,T(xy,%X,,%3) = (%) + X5, %X, — X3)

[(1,1,0)(1,-1,1),2(0),0]
(iv) The zero and the identify linear transformations

(v) T:R® > R? S.t.,T(Xl,XQ,Xs):(Xl - X,,2X5 —Xl) .

3. Find the L.T. From R® — R® which has its range the subspace spanned by (1,
0, -1),(1, 2, 2).
4, Show that the linear transformation T:R3 3R3 defined by

T(xl,XQ,XS) = (2X1,X —X,,5%; +4X, +X3) is invertible.
S. Let T be a L.T. from R’ onto a 3-dimensional subspace of R5. Show that dim

Ker T = 4.
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LINEAR TRANSFORMATIONS-II

I. Algebra of Linear Transformations
II. Invertible Linear Transformations
III. Matrix of a Linear Transformations

IV. Self Check Exercise

I. Algebra of Linear Transformations

I.(a) Sum of Linear Transformations
Let V and W be two vector spaces over the same field F. Let T : V - W and
S : V> W be two linear transformations. We define T + S, the sum of T and S by

T+S: V> W,s.t.
(T+S)v=T(v)+S(v),veV
Then T + Sis also a L.T. from V - W as
(T+8S)(ax+By)=T(ax+By)+S(ax +By)
= aT(x)+BT(y) + aS(x) +BS(y)

=a(T+S)x+B(T+S)y

Again for a € F, we define the product of a L.T. T: V > W with a, by (aT) : V> W s.t.,

(ocT)V = OL(T(V)) .

It is easy to see that aT is a also a L.T. from V —» W. Let Hom (V, W) be the set of all
linear transformations from V — W. Then we show Hom (V, W) forms a vector space
over F under the addition and scalar multiplication as defined above.

We have already seen that when T, S € Hom (V, W), a € F then T + S, aT € Hom (V,
W), thus closure holds for these operations. We verify some of the other conditions
in the definition.

(T+S)v=T(v)+S(v)=S(v)+T(v)=(S+T)wforallve V

36
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= T+S=S+TforallS, TeHom(V,W)
The map O:V - W,st,0(v)=0isaL.T. and

(T+O)v=T(v)+O(v)=T(v)=(0O+T)vforallv
This O is zero of Hom (V, W)
For any T € Hom (V, W), the map (-T) : V> W, s.t.,

(=T) v = =T (v)
will be additive inverse of T.

Again, [a(T+8)]v=a[(T+8)v]=a[T(v)+S(v)]=aT(v)+aS(v)
= (aT)v +(aS)v = (aT +aS)v forallveV
= a(T+S)=aT+aS
[(oB)T]v=(ap)T(v)=a[pT(v)]=[a(BT)]v forallv
> (af) T=a(pT)

(1IT)v=1.T(v)=T(v)forall v
= 1. T=T

Hence one notices that Hom (V, W) forms a vector space over F.

Note : The notation L(V, W) is also used for denoting Hom (V, W).

I.(b) Product of Linear's Transformations

Definition : Product (composition) of two linear transformations

Note : TS may not be defined and even if it is defined it may not equal ST.

II.

Let V, W, Z be three vector spaces over a field F
Let T:V—->W,S:W-—>ZbelL.T.
We define ST:V > Z, s.t.,

(ST)v = S(T(v))

Paper III

then ST is a linear transformation (verify!), called product of S and T.

Linear operator and Linear Functional

Definition : AL.T. T: V - Vis called a linear operator on V, whereas a L.T. T : V
— F is called a linear functional. We use notation T?for T.T. and T*= T ! T etc.

Theorem 11 : Let T, T, T, be linear operators on V, and let I : V — V be the
identity map l(v) = v for all v (which is clearly a L.T.) then

@ IT=TI=T
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(i)  T(T,+T,)=TL +TT,
(T, +T,)T=T,T+T,T
(i) o(0T,)=(¢T)T, =T (¢T,) a eF
iv) T (T,T3)=(TyT,) Ts.
Proof : (i Obvious.

()  [T(T +T)]x=T[(T, +T,)x]=T[T (x)+ T, (x)]
=T(Ty (x))+ T(T2 (x)) = TTy (x) + TT, (x)
=(TT, + TT,)x

=T(Ty+T,) =TT, + TT,

Other result follows similarly.
(i) [o(TT,)]x=a[(TT,)x]= a[T1 (T, (x))]
[(OLTI)TQ]X =(aTy) [TQ (x)] = oc[Tl (T2 (X))J

[T (aTy) ] x =T (aT, ) x =T (oT, (x)) = oT; (T3 (x)) ]

Hence the result follows.
(iv) Follows easily by definition.

See exercises for the generalised version of above theorem.

Paper III

Problem 1 : Find the range, Rank, Ker and nullity of the linear transformation

T:R3 —>R3,s.t.,
T(x,y,2)=(x+2,Xx+y +22,2x +y + 32)

Solution : Let (x, y, z) € Ker T be any element, then
T(x,y,2) =(0,0,0)

= (x+2,x+y+2z,2x+y +32)=(0,0,0)
=>x+0+2z=0
X+y+2z=0

2x+y+3z=0



B.A. Part-I 39 Mathematics : Paper III

Giving x=-2z,-z+y+2z=0ie.,y=-2

Thus Ker T consists of all elements of the type (x, X, —x) = x (1, 1, —1) where x is any
real no. i.e., Ker T is spanned by (1, 1, —1) which is L.I. Note (1, 1, -1) € Ker T
Hence dim (Ker T) = 1 = nullity of T

Again, from def. of T, we notice elements of the types (x + z, x + y + 2z, 2x + y + 32)
are in Range T.

Now (X+2z,Xx+y+22,2x+y+3z)=(x+0+2,x+y+22,2x+y+3z)
=(x,%,2x)+(0,y,y) +(2,22,3z)

=x(1,1,2)+y(0,1,1)+2(1,2,3)
Thus Range T is spanned by {(1, 1, 2), (0, 1, 1), (1, 2, 3)}
Since (1, 1, 2) + (0, 1, 1) = (1, 2, 3) we find these vectors are L.D. So dim Range T <2
Again as (1, 1, 2) and (0, 1, 1) are L.I. we find
dim Range T = 2 = Rank T.
Problem 2 : Find the range, rank, Ker and nullity of the following linear

transformations
(a) T:R* 5> R%sit, T(x;,%,) = (%, X, +X5,%,)
(b) T:R* >Rt T(xl,x2,x3,x4) = (X1 — X4, Xy +X3,X3 —X4)

Solution : (a) From definition of T, we notice elements of the type (X, X; +X,, X;)
will have pre images in R?i.e., elements of this type are in Range T.

Now (xl,x1 +X2,X2) =(X1 +0, x; + X, O+X2)
=(x1,%,0) +(0,%,,%,)
=x;(1,1,0)+x,(0,1,1)

or that Range T is spanned by ((1,1,0), (0, 1, 1)} and since
o, (1,1,0) +a,(0,1,1)=(0,0,0)

=0, =0a,=0
these are L.I. and thus form a basis of Range T

= Rank T =dim Range T = 2.

Again (x1,%,) e Ker T= T(xy,x,)=(0,0,0)
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= (x1,%; +X5,%,) =(0,0,0)
=2x,=0,x+%X,=0,%x,=0
=X, =X,=0

= Ker T = {(0, 0)}

Also then nullity T = dim Ker T = 0.

(b) From definition of T, we find elements of the type (x1 — X4, X9 +X3,X3 —x4)

have pre image in R*.
Now

:xl(1,0,0)+x2 (O, 1,0)+x3 (0,1,1)+x4 (—1,0,—1)
or that Range T is spanned by

{(1,0,0),(0,1,0),(0,1,1), (-1,0,-1)}

Since Range T is a subspace of R®which has dim 3 these four elements cannot form

basis of Range T.
In fact these re L.D., elements as

(-1,0,-1)+(1,0,0)+(0,1,0) +(0,1,1) = (0,0,0)
If we consider three members
(1,0,0),(0,1,0),(0,1,1)
we notice o, (i,0,0) + a5 (0,1,0) + a3 (0,1,1) =(0,0,0)

= o; =0foralli

or that (1, O, 0), (0, 1, 0) (O, 1, 1) are L.I., and hence form basis of Range T

= dim Range T = 3 =rank of T

one might notice here that as

(-1,0,-1)=-1(1,0,0)-1(0,1,0)~1(0,1,1)

the elements (1,0,0),(0,1,0),(0,1,1) span Range T
Also then Range T = R?

Again (%1,X5,X3,%, ) € Ker T = T(x,X,,X3,%4) =(0,0,0)
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= X, —X4 =0
Xq+X3=0
X3 —X4 =0
if we fix x,, we get X; = X4, Xy =—X3 =X, X3 = X4
or that elements of the type (X4,—X4, X4, x4) are in the Ker T

Problem 3 : Let T be a linear operator on V. If T2= 0, what can you say about the

relation of the range of T to the null space of T? Give an example of linear operator
T of R?such that T?= 0, but T # 0.

Solution : T =0= T?(v)=0forallveV
= T(T(V))=0
= T(v)eKerT forallveV
=range T < Ker T.

Define T:R? - R?, such that

T(xl,xg) = (XQ,O)

then T is a linear operator (Verify!)

Since T(2,2)=(2,0)=(0,0)
T#0

But T (x1,%,) = T(T(xy, X,)) = T(x, 0) = (0,0)
=T =0.

Problem 4 : Let T be a linear operator on V and let Rank T?= Rank T then show
that Rank T n Ker T = {0}.

Solution: T: vV, T2: V>V

Rank T?= dim V - dim Ker T?
= dim Ker T = dim Ker T?

We claim Ker T = Ker T?
xeKerT:>T(x)=0:>T2(x)=T(O)=O
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:>xeKerT2:>KerT<;KerT2

— Ker T =Ker T? (as they have same dim)

x e Range TnKer T > x e Range Tand x e Ker T
= T(x)=0,x =T(y) for some x e V
=T(T(y))=0

=T?(y)=0

:>yeKerT2=KerT

=>T(y)=0=>x=0

= Ker T nRange T = {0}.

III. Invertible Linear Transformations

We recall that a map T:V — Wis invertible iff it is 1-1 onto, and inverse of T is the

map T7!:W — Vsuch that

T! (v)=xe Tx)=y

We show that inverse of a (1-1 onto) L.T. is also a L.T. Let T:V - Wbe 1-1 onto L.T.

and T!':W — Vbe its inverse.

We have to prove

T (owy +Bwy ) =oT ' (wy )+ BT (wy) o,BeF, wy,wy e W

Since T is onto, for w;,w, € W,3vy,v, € V such that T(v;) = wy, T(v,)=w,

Now

v =T (W), vy =T (wy)

T (owy +Bw, ) = T (T (v, ) + BT(v))
=T (T(av,) + T(Bv))

=T (T (avy +pvy))

=av; +Bv,
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=aT ™ (wy)+ BT (wy).

Definition : AL. T. T:V - Wis called non-singular if Ker T = {0} i.e. if T is 1.1.

Theorem 12 : A linear transformation T:V — Wis non singular iff T carries each
L.I. subset of V onto a L.I. subset of W.

Proof : Let T be non-singular and {Vl,VQ...,Vn}be a L.I. subset of V. we show

{T(Vl), T(VQ)...,T(VH)} is L.I. subset of W.

Now o, T(vy)+0,T(vy)+...+0,T(v,)=00a; €F
= T (o) +...+0,v,)=0
= a;V; +... 0.V, € Ker T = {0}
=>oyVv; +...o,v, =0
=o; =0forallias v,v,...,v, are L.L
Conversely, let veKer T be any element
Then T(v) =0

= {T(v)} isnotLlin W
= v is not L.I. in V. (by hypothesis)
=v=0=Ker T ={0}

= T is non singular.

Theorem 13 : Let T:V - Whe a L.T. where V and W are two F.D.V.S. with same

dimension. Then the following are equivalent.

(1)
(ii)
(i)

(iv)

T is invertible
T is non singular (i.e., T is 1-1)
T is onto (i.e. Range T = W)

If {VI,VQ,...,VH} is a basis of V then

{T(vl),T(vg),...,T(vn)} is a basis of W.

Proof : (i)=(ii)follows by definition.

(i) = (iii) T is non-singular
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= Ker T = {0}

=dimKerT=0

Since dim Range T + dim Ker T = dim V, we get
dim Range T = dim V
= dim Range T = dim W (given condition)

But Range T being a subspace of W, we find
Range T =W

(iii)= (i) T onto means Range T = W

= dim Range T = dim W = dim V
and as dim Range T + dim Ker T = dim V, we get
dim Ker T =0

= Ker T = {0}
or that T is 1-1 and as it is onto T will be invertible.

(i)=(iv) T is invertible = T is 1-1 onto
i.e., T is an isomorphism.
(v)=(i)
Let {T(Vl),...,T(Vn)} be basis of W where {vj,..v,}is basis of V. Any
w e W can be put as
w=0o,T(v))+... +a,T(vy,)
=T(oyv; +...+a,v, ) =T(v) for some veV

- T is onto. Thus (iii) holds.
Hence (i) holds.

Problem 5 : Let T be a linear operator on R?, defined by
T(Xl,XQXS) = (C‘}xl,x1 —Xg,2X; + Xy + X3)
show that T is invertible and find the rule by which T-'is defined.
Solution: T7:.R3 , RS

Let  T(x;,X,,X3)eKerTbe any element

Then T(x,X5,%3)=(0,0,0)
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:>(3xl,x1 —Xg,2X; + X, +X3) =(0,0,0)
=3x;=0,%x, -%X, =0,2x; + X, + X3 =0
=X, =X, =X3 =0 or that Ker T = {(0,0,0)}

= T is non singular and thus invertible (See theorem 8)

Now If (21,22,23) be any element of R?, then (XI,XQ,Xs)Will be its image under T if

T(Xl,XQ,X3) = (21,22,23)
=2x;, =2,
X=X =25

2X + Xy + X3 =2,

. . Z Z
Which give X; :?}XQ :?_ZQaZS =Z3-21t2

Hence T!:.R3 _ R3is defined by
z, z
T i (2y,25,2,)=| 2,22 —2,,2:. —2, +2
(rr2202) = 22212022 |,
Problem 6 : If T: V » Vis a L.T., such that T is not onto then show that there

exists some Q=zvin V s.t.,, T(v) = 0.

Solution : Since T is not onto, it is not 1-1 (theorem done)
Suppose 3no 0zveV Vs.t. T(v)=0
Then T(v) = O only when v =0
= Ker T = {0} = T is 1-1, a contradietion.

IV. Matrix of a Linear Transformations

Let . U(F), V(F) be vector spaces of dimension n and m respectively, Let

B={uy,....u,},B' ={vy,....,.v;, } be their ordered basis respectively. Suppose T:U — V
is a linear transformation. Since T(w,),....,T(u,)eVand{vy,....,v,} spans V, each
T(u) is a linear combination of vectors vy,.....,v

Let T(uy) = oy vy + .oy Vi
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where each & € F . Then the m x n matrix

Otll 0(12 e e aln

[0

ml m2

is called matrix of T with repsect to ordered basis B, B' respectively. A is uniquely

determined by T as each o € Fis uniquely determined. We write
A= [T]B,B'

Theorem 14 : Hom (U,V) = M___ (F)

nxN

Proof : Define 6 Hom (U,V) - m,,, (F),st.,

Where B={u,...u,},B'={vy,....v,} are ordered basis of U, V respectively. 0 is well

defined as [T]B,B' . is uniquely determinec by T
It is not difficult to verify that 0 is a linear transformation.

Let  6(S)=6(T),STeH(U,V)

Then [S]B,ﬁ‘ = [T]B,B‘

= (a5) = (by)

= = le for all i, j

= S(uj)=§1:aijvi :ibijvi :T(uj)for all j=1,...n
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=S=T=0is1-1

Let A= (aij) €M,y (F) . Then 3 a linear transformation T e H (U, V) s.t,,

mxn

A= [T]ﬁ,ﬁ' =6(T)= 0 is onto.

Hence 0 is an isomorphism and so Hom (U,V)=M,_,,, (F)

Cor .: dim Hom (U, V) = mn

Proof : S = set of al m xn matrices with only one entry I and all other entries zero, is
a basi of My, (F).
Clealy, o(S)=mn=dimM,_,, (F)=mn

dim Hom (U, V) = mn .
Problem 7 : Let T be a linear operator on C? defined by T(x;,x,)=(x;,0)Let
B= {612 (1,0,) &, (0,1)},[3' = {(xl =(Li),0, = (—1,2)} be ordered basis for C2. What is the
matrix of T relative to the pair B,5'?
Solution : Now T(eg)=T(0,0)

=(1,0)

=a(l,i)+b(-,2)

—>a-bi=1wherea, beC
ai+2b =0
—a=2,b=-

Also T(e,)=T(0,1)=(0,0) =00, +Oa,

[Tl = {_21 8]

Proble 8 : Let T be linear operator on R3 the matrix of which in the standard

ordered basis is:
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>

1]

O
w = N

1
1
4

Find a basis for the range of T and a basis for the null space of T.
Solution : Det A=1(4-3)-2(1)+1(1)

=1-2+1=0
A is not invertible and so T is not invertible

Let {€=(1,0,0,),6,=(0,1,0),€5=(0,0,1)}

be standard ordered basis of R3.

Let  (x,X,,%X3)eKerT

Then T(x;,X,,%X;)=0
= T(x,(1,0,0) +x,(0,1,0) + x5 (0,0,1)) = 0
= T(x, € +X, €, +X3 €3) =0
= x,T (&) +x,T(&;) +x3T(e5) =0
= x;(1,0,-1)+%,(2,1,3) +x5(1,1,4) =0
= (%) + 2%, + X3,X, +X3,—X; + 3%, +4xX3)=0
=X, +2X5 + X3 =0,%X5 +X3 =0,-%x; +3x, +4x5; =0
=X +X5=0,X,+%X3=0
= (x1,%5,%X3) = (—X5,X5,-X3)

=x,(-1,1,-1)

= every element in Ker T is multiple of (-1, 1, -1)
= Ker T is spanned by (-1, 1, -1)

Since (-1, 1, -1) # 0, {(-1, 1, —1)} is basis of Ker T.
dim Ket T =1 = dim Range T = 2

Since T &=(1,0,-1)

Te,=(2,1,3)

Paper III
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belong to Range T and aT g; +bT €,=0
we find a(1,0,-1)+b(2,1,3)=0
=b=0,a=0
:>{T €, T 62} is a linearly independent set in Range T. As dim Range T = 2,
{(1,0 - 1),(2,1,3)} is a basis of Range T.

Problem 9 : Let T be a linear operator on F" and let A be the matrix of T in the
standard ordered basis for F». Let W be the subspace of F" spanned by the column
vectors of A. Find a relation between W and T.

Solution : Tpn _, pn

Let B= {el =(1,0,0,.....0),...... e, =(0,0,...... ,1)} be the standard ordered basis of F' and

let

a1 Ao Ain

a a a
A=|B21 82 2n

ay 8py ... Apy

thus T(e;)=a,;€, +€y€5 +....+ay e,

T(ey) =21, + 8,8y +..co + A€
and also W is spanned by
{(all,azl,....,anl),(alg,aw,....,ang), ..... ,(aln,agn,....,ann)}
We claim T.fF" _, W is onto L.T.
For any x e F",x =o€, + a8y +... + ap€,
= T(x) =, T(e;) + 0, T(ey) +... + a,T(ey)

= T(x)e WasT(e;),T(e,),....,T(e,) e W



B.A. Part-I 50 Mathematics : Paper III
Again, for any we W, w=p, T(e;)+B,T(ey)+...+B,T(ey,)

=T([3161 + B262 +....+ Bnen)
showing thet T is onto
= Range T - W = dim Range T = dim W
or that rank of T = dim W
which is the required relation between T and W.

V. Self Check Exercise

1. Let T be the linear transformation from R® into R? defined by

T(xl,xg,x3) = (x1 +X,,2%,; —X3)

(i) If B,B' are standard ordered basis for R® and R? respectively, find

[T]B.B.
(i) If B={oy =(1,0,-1),05 =(1,1,1),05 = (1,0,0)}
B'={B, =(0,1),B, =(1,0)} .
2. Let T be the linear operator on R3, the matrix of which in the standard
1 01
ordered basis is A=10 11
011

Find a basis of Range T and Ker T.

3. Show that T:R3 > R2s.t, T(x,t2)=(y,x)is a L.T. Find the matrix

representation of T for the standard ordered basis fo R* and {(0,1),(2,3)} of R2.



