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1.1.1 Introduction
Firstly, we introduce a set as :
Def. Set : A set is a well defined collection of distinct objects.
The word 'well defined' implies that we are given a rule with the help of which we
can say whether a particular object belongs to the set or not. The word 'distinct'
implies that repetition of objects is not allowed. Each object of the set is called an
element of the set. Further, sets are generally denoted by capital letters A,B,C,.....
while elements of the sets are denoted by small letters a,b,c, ........ .
For Example : (i) The set of days of a week.

(ii) The set of even integers.
A set can be represented in two ways :
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(1) Tabular or Roster Method

(2) Set-builder or Rule Method
In roster form, we represent a set by listing all its elements within curly brackets {},
separated by comma's while in the set-builder form, we do not list the elements
but the set is represented by specifying the defining property.

For Example : Set Roster form Set-builder form
(1) A set of vowels A={a,e,i,o,u A = {x: xis a vowel of
english alphabet}
(2) A set of positive even A ={2,4,6,8, 10} A = {x : x is a positive even
integers upto 10 integer and x < 10}

There are some basic mathematical sets, such as
N = Set of all natural numbers

W = Set of all whole numbers

I a Z = Set of all integers

Q

R
1.1.2 Some Basic Terms in Set Theory

Set of all rational numbers

Set of all real numbers

Membership of a Set : If an object x is a member of the set A, we write xe€A,
which can be read as 'x belongs to A' or A contains x. Similarly, we write x ¢ A to
show that x is not a member of the set A.

For Example : Let A = {1, 2, 4, 6, 7}. Here 2 € A but 5 ¢ A.

Finite Set : A set is said to be finite if it has finite no. of elements.

For Example : A = {2, 4, 6, 8}

Infinite Set : A set is said to be infinite if it has an infinite number of elements.
For Example : A = {1,2, 3....... }and B = {x : x is an odd integer} are infinite sets
Singleton Set : A set containing only one element is called a singleton or a unit set.
For Example : A = {x : x is a perfect square and 30 < x < 40} = {36}

Empty, Null or Void Set : A set which contains no element, is called a null set and
is denoted by ¢ (read as phi).

For Example : A= {X : X is a positive integer satisfying x> = %}

Sub-Set, Super-Set : If every member of a set A is a member of a set B, then A is
called sub-set of B and B is called super-set of A.

or if x € A = x € B, then A is a sub set of B and B is a super set of A and we write it
as, A c B which means A is contained in B or B contains A.
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Note 1. Since every element of A belongs to A
A C A = every set is sub set of itself.
2. The empty set ¢ is taken as a sub-set of every set.
For Example : Let A={1,2,3,4,5,6, 8,10}, B={2,4,6, 10}, C=({1, 2, 7, 8}.
Now every element of B is an element of A, .. Bc A
Again 7 e C,but7 ¢ A
C z Ai.e., Cis not a sub-set of A.
Equality of Sets : Two sets A and B are said to be equal if both have the same
elements. In other words, two sets A and B are equal when every element of A is an
element of B and every element of B is element of A.
i.e., if Ac B and B c A, then A = B.
For Example : A={1,2,3,4,5,6,7,8,9, 10} and B = {x : x is a natural number and

1<x<10}

Hence, A = B.
Proper Sub-set : A non-empty set A is said to be a proper subset of B if A ¢ B and
A = B.

Note : (i) ¢ and A are called improper subsets of A.

(ii) If A has n elements, then number of subsets of A is 2.
Power set : The power set of a finite set is the set of all sub-sets of the given set.
Power set of A is denoted by P(A).

For Example : Take A = {1, 2, 3}

P(A) = {¢, {1}, {2}, 3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Universal Set : If all the sets under consideration are sub-sets of a fixed set U,
then U is called a universal set.
For Example : In Plane geometry, the universal set consists of points in a plane.
Comparable and Non-comparable Sets : Two sets are said to be comparable
if one of the two sets is a sub-set of the other. Otherwise they are said to be non-
comparable.

For Example : Let A = {2, 3, 5}, B = {2, 3, 5, 6}.
Here A c B, so A and B are comparable sets.
Order of a Finite Set : The number of different elements of a finite set A is
called the order of A and is denoted by O(A).

For Example : If A= {2, 3, 6, 8}, then O(A) = 4
Equivalent Sets : Two finite sets A and B are said to be equivalent sets if the
total number of elements in A is equal to the total number of elements in B.

For Example : Let A={1,2,3,4,6},, B={1,2,7,9, 12}

O(A) = 5 = O(B) = A and B are equivalent sets, denoted as A ~ B.
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Cardinality : Number of different elements in a set is known as its cardinality.

1.1.3 Operations on Sets

In order to represent various operations on sets, we use a special type of diagrams,
called venn diagrams defined as :

Venn Diagrams : The relations between sets can be illustrated by certain diagrams
called Venn diagrams. In a Venn diagram, universal set U is represented by a
rectangle and any sub-set of U is represented by a circle within a rectangle U.
Now, various operations of set theory are discussed below :

1.1.3.1 Union of Two Sets

If A and B be two given sets, then their union is the set consisting of all the elements
of A together with all the elements in B. We should not repeat the elements. The
union of two sets A and B is written as A U B.

In symbols, AUB={x:xeAorxeB}

A U B IS SHIELDED LIKE WZZ727772

For Example : Let A = {1, 2, 3, 5, 8}, B ={2, 4, 6}
AuB=1{1,2,3,4,5,6, 8
1.1.3.2 Intersection of two sets
The intersection of two sets A and B, denoted by A n B, is the set of elements
common to A and B.
In symbols, AnB={x:x € Aand x € B}

.

A N B IS SHIELDED LIKE &222227774
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For Example : Let A = {2, 4, 6, 8, 10, 12}, B={2, 3,5, 7, 11}

AnB=1{2}
Disjoint Sets : If A and B are two given sets such that A N B = ¢, then the sets A
and B are said to be disjoint.
For Example : Let A= {a, b, c, d}, B ={l, m, n, p},

A N B =¢ = A and B are disjoint sets.
1.1.3.3 Difference of two sets
The difference of two sets A and B is the set of those elements of A which do not
belong to B. We denote this by A - B.
In symbols, we write A-B ={x:x € Aand x ¢ B}
A - B is also sometimes written as A/B.

A — B IS SHIELDED LIKE ¥ZZ2Z2Z7Z74

[Similarly, We can define B-A = {x : x € B and x ¢ A}]
For Example : Let A={a, b,c,d, e}, B={c, d, e, {, g}
Then, A - B = {a, b} and B-A = {f, g}
Note. B-A+#A-B
Symmetric Difference of Two Sets
If A and B are any two sets, then the set (A — B) U (B - A) is called symmetric
difference of A and B and is denoted by A A B.
In symbols, we write
AAB={x:(xeAandx ¢B)or (x € Band x ¢A)}

A LB IS SHIF\ DD IKE PPZ27707%0
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For Example : Let A = {1, 2, 4}, B ={1, 2, 3, 4, 6}
AAB=(A/B)U(B/A)=(A-B)u((B-A)={4uU{3,5,6}=1{3,4,5, 6}.
1.1.3.4 Complement of a Set
Let A be a subset of universal set U. Then the complement of A is the set of all
those elements of U which do not belong to A and we denote complement of A by
Acor A'. We can write A°={x:x e U, x ¢ A}

ACIS SHIELDED UIKE BZZZZZ 722

For Example : [f U = {2, 4, 6, 8,10}, A = {4, 8}, then A°= {2, 6, 10}
Note. Uc= ¢ and ¢°= U, (A°)°= A.

1.1.4 Some Fundamental Laws of Algebra of Sets

I. Idempotent Laws

Statement : If A is any set, then () AUA=A (il AnA=A

Proof : (i) LHS.=AUA
=x:xeAUAl={x:xeAorxeAl
=x:xeA=A
= R.H.S.

(ii) Do Yourself.

II. Identity Laws

Statement. If A is any set, then () Aud=A (ii)jAnU=A

Proof : (i) LHS. =Aud¢=&x:xecAUd}
={x:xeAorxedp=x:xecAl
=A=R.H.S.

(ii) Do Yourself.

III. Commutative Laws

Statement. If A and B are any two sets, then () AUB=BUA (iijAnB=BnA

Proof : Do Yourself.
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IV. Associative Laws

Statement. If A, B and C are any three sets, then
@HAVvBUC)=AUB)UC(H)ANnBNC)=(AnB)nC

Proof : Do Yourself.

V. Distributive Laws

Statement. If A, B, C are any three sets, then
(i) AuBnC)=AuB)n(AuUC)
(ii) AnBuC=(AnB)u(AnC)
Proof : LH.S. =AU (BnC)
=x:xeAu((BnC)
={x:xeAorxe(BnC)}
={x:xeAor (xeBandxeC)
={X:(xeAorxeB)and (x € Aorx e C)}
={x:xe(AuB)andx e (AuUC)}
=x:xe(AuB)n(AuUC)
={AuB)n(AuUC)
=R.H.S.
AuBnC)=AuB)n(AuC)
Note. We can also prove above result by showing that
AuBnNnCcAuB)n(AuCland AUB)n(AuUuC)cAu(BnC)
(ii) Do Yourself.
VI. De Morgan's Laws

Statement. If A and B are two sub-sets of U, then
(i) (AuB)c=A°nB° (ii) (A " B)°= A°U B¢
Proof: (i) LH.S. = (AuUB)‘={x:x e (AuB)3
=x:x¢(AUuB)}
={x:x¢Aandx¢B}
={x:x € A°and x € B9
={x:x e (A°n B9}
= A°nB°=R.H.S.
(AuB)e=A°n B
(ii) Do Yourself.
1.1.5 Some Important Examples
Example 1.1 : Let U be the set of integers and let A = {x : x is divisible by 3}, let B =
{x : x is divisible by 2}. Let C = {x : x is divisible by 5}. Find the elements in each of
the following set :
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(@ AnB (b)AuC (c)An(BuUC) (d)(AnB)ucC
(€) A°’n Be () (AnB)* (g B/A (h) A/B (i) A/(B/C)
Sol.: U={0,%£1,+2,+3,£4,........... }

A = {x: xis divisible by 3} = {x: x=3n,n e[} = N,
B = {x: x is divisible by 2} = {x: x = 2n, n € [} = N,
C ={x:xis divisible by 5} = {x:x=5n,n eI} = N,

(a) AnB=N,nN,=N, - lcm.{2,3}=6

={ -12,-6,0,6, 12, ........ }
(b) AuC=N,UN={........ -9,-6,-5,-3,0,3,5,6, ......... }
(c) AnBulC=AnB)U(AnC)=(N,nN)U(N,nN)=NUN,
={ieinn. -15,-12,-6,0,6, 12, 15............ }
(d) (ANB)uC={N,NnNj}UN, =N, UN,
={iiiins -12-10,6,-5,0,5,6, 10, 12,......... }
(e) A°n B°= (AUB)°= (N,UN,)°
={in.. -11,-7,-5,-1,1,5,7,11,............ }
(f) (AN B)e= (N;n Ny°= (N
={7,-5,-3,-2,-1,1,2,3,4,5, ............ }
() A/B = N,/N,=N,- N,
={n -10,-8,-4,-2,2,4,8,10 ......... }
(h) B/A=N,/N,=N,- N,
={ -15,-9,-3,3,9, 15, .......... }

() A/(B/C)=(A/B)u(AnC)
= (NS/NZ) U (N, nN,) = (NS/NZ) UN,
={oeiis ,—15,-9,-3,3,9,15, ............. | S 30, 15,0, 15, 30........ }

={oiiiiiene. ,—15,-9,-3,3,9, 15, ... ).
Example 1.2 : Prove that A U (B/A) = A UB.
Sol. : L.H.S.=AuU(B/A)=AuU(B-A)

=AU (BNAY [A-B=AnNnB
=(AuB)n(AUAY [Distributive Law]
=(AuB)nX [A U A°=X]
=AuB=R.H.S.

Example 1.3 : Let A= {1, 2, 4}, B = (4, 5, 6},
Find AuB,AnBand A-B.
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Sol. A={1,2,4and B={4, 5, 6}

(i) AuB={1,2,40u4, 5 6}={1,2,4,5, 6}

(ii) AnB={1,2,4 4,5, 6}=1{4}

(iii) A-B={1,2,4}- (4, 5, 6} = {1, 2}.
Example 1.4 : Prove that AUB=ANBiff A=B
Sol. : (i) Assume that AUB=AnNB

Let x be any element of A
xeA >xeAuB=>xe€ANnB
=>xeB
xeA =>xeB
AcB
Similarly, B c A
From (2) and (3), A = B.
AuB=AnNB =A=8B
(ii) Assume that A = B
AuB=AUA=A
AnNnB=AnA=A
AuB=AnNnB
A=B =>AuB=AnB.

Example 1.5 : For any two sets A and B, provethat AnB=¢ = AcB-.

Sol. : We are given that AnB = ¢
Let x be any element of A

xeA =>x¢B
= x € B¢
xeA =X € B°

But x is any element of A
every element of A is an element of B¢
A cB-

Example 1.6 : Prove that A°/B°= B/A

Sol. : L.H.S. = A°/B°

=A°-B°={x:x € (A°- B9} ={x:x € Aand x ¢ BY}
={x:x¢AandxeB}={&:xeBandx¢A}
={x:xe(B-A)}=B-A=B/A

=R.H.S.

(1)

[ of (1)]

[ of (1)]
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A°c/B°= B/A.
Example 1.7 : Showthat An(B-C)=(AnB)-(AnC)
Sol.:R.H.S. =(AnB)-(AnC)
=(ANnB)Nn(AnC)c=(AnB)n(A°U C9
=[(ANnB)nA]U[ANB)nCY
=[(ANA)YNBJUANBNCY=(dnB)U[]An(B-C)
=pU[AnB-C)|=AnB-C)=L.H.S.
1.1.6 Cartesian Product of Sets
Ordered-Pair : By an ordered pair of elements, we mean a pair (a, b) such that a €
A and b € B. The ordered pairs (a, b), (b, a) are different unless a = b. Also}
(a, b) =(c,d)iffa=c, b=d.
Cartesian Product of Two Sets : The set of all ordered pairs (a, b) of element
a € A, b € B is called the cartesian product of the sets A and B and is denoted by
A x B.
In symbols, Ax B={a, b):aecA,beB}
Note 1. A x B and B x A are different sets if A = B.
2. A x B = ¢ when one or both of A, B are empty.
Art 1.1 : Prove that
(i) Ax(BuC)=(AxB)uU(AxC(C)
(ii) Ax(BnNnC)=AxB)yn(AxC)
Proof : (i L.H.S. = A x (BuC(C)
xeAandy e (BuC)

{(x,
{(x,
{(x,

y):

y):xeAand (yeBory e C)}

y):(xeAandyeB)or (xeAandy e C)}
={xy):(xy) e(AxB)or (x,y) € (AxC)
={xy):(xYy) €(AxB)uU(AxC)
=(AxB)U(AxC)=RH.S.

AxBuC)=AxB)uU(AxC(C)

(ii) LHS.=Ax(BnCQC)
={x,y):xeAandy e (BnC)}
={x,y):xeAand (y e Bandy € C)}
={x,y):(xe€Aandy eB)and (x € Aandy € C)}
={x,y):(x,y) € (AxB)and (x,y) € (A* C)}
={xy):(xy) €(AxB)n(AxC)
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=(AxB)n(AxC)=RH.S

. AxBnC)=(AxB)n(AxC).
Example 1.8 : Let A = {1, 2, 3}, B = {2, 4}. Find A x B and show it graphically.
Sol. Here A={1, 2, 3}, B={2, 4}

AxB=1{1,2,3} x{2,4 ={1, 2), (1, 4), (2, 2), (2,4), (3, 2), (3, 4)}.

Now to represent (1, 2), we draw a vertical line through 1 and a horizontal line
through 2. These two lines meet in the point which represents (1, 2). Similarly we
can represent the other points in A x B and get the graphical representation of A x B.

Y
A
s oo les Jee
1,2 2,2 3,2
) [02 Jea o2
: » X
X% 1 2 3
Y’

Example 1.9 : A, B, C are any three sets, then prove that
(ANnB)xC=AxC)n(BxC)

Sol. : LH.S.=(AnB)xC
={x,y):xe(AnB)andy € C}
={x,y): (xeAand x € B)and y € C}

={x,y):(xeAandy e C)and (x € Bandy € C)}
={xy):(xy) eAxC)and (x,y) € (Bx C)}
={x¥y):xy e@AxC)n(BxC )}
=AxC)n(BxC)=RH.S.

1.1.7 Partition of Sets

A partition of a non-empty set A is a collection P =1{A , A, A,,............ } of subsets of A
such that
(i) A=A VA UA U..........

and  (ii) AN A= ¢ fori=j
A, A, A,..... are called cells or blocks of the partition P.
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For Example : (i) Let A = {a, b, c} be any set.
Then, P, = {{a}, {b}, {c}}, P,= {{a}, {b, c}}, P, = {{b}, {a, c}},
P, = {{c}, {a, b}}, P, = {{a, b, c}} are partitions of the set A.
(ii) Let Z = set of integers. Then the collection
P = {{n} : n € Z} is a partition of Z.

Minimum Set or Minset or Minterm :

Let A be any non-empty setand B, B,,.......... , B, be any subsets of A. Then the
minimum set generated by the collection {B, B, ...... , B} is a set of the type DN D,
[0 VRUUT ND_,whereeachD,D,, .......... , D is B,or Bffori=1, 2, 3,....... , n.

For Example : The minsets generated by two sets B, & B, are
A,=B,NnB,,A,=B,NB,,A,=B, 1B, A,=B°NBS.
Normal form (or Canonical form) :
A set F is said to be in minset normal (or cannonical) form when it is expressed
as the union of distinct non-empty minsets or it is ¢

i.e., either F=¢or F = Y A;, where A; ® are non-empty minsets.

Principle of Duality for Sets :

Let S be any identity in set theory involving the operation union (v),
intersection (n). Then the statement S* obtained from S by changing union to
intersection to union and empty set ¢ to universal set U, U to ¢, is also an identity
called the dual of the statement S.

Remark : The number of minsets generated by n sets is 2=
1.1.8 The Inclusion-Exclusion Principle

It is the most general form of addition principle for enumeration. As we know
that number of elements of a finite set A is denoted by n (A) or |A|, so following
results regarding number of elements should be kept in mind for doing problems :

1. n(AuB)=n(A)+n (B)-n(AnB)

2. n(AuB)=n(A) +n (B) <A, B are disjoint sets.

3. nAuB)=n(A-B)+n(B-A)+n (AnB)

4. n(A)=n (A-B)+n (AnB)

S. n(B)=n(B-A)+n(AnB)

0. nAuBuUC)=n(A)+n((B)+n (C)-n (AnB)
-n(BNnC)-n(CnA)+n(AnBnC)

7. n(AAuB)=n(AnB) =n (U)-n(AnB)

8. n(AAnB)=n(AuB))=n(U)-n(AuUB)

9. nAnB'nC)=n(A)-n(AnB)-n(AnC)+n(AnBnC)

Proof : (1) We know that A U B is the union of three disjoint sets
A-B,AnBand B-A.
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A ~ B is shaded like

TTTTTTT,
winin
i
i

A N Bis shaded like

B — A is shaded like [

n(AuB)=n(A-B)+n(B-A)+n (AnB)
Again A is union of A - B and A n B, which are disjoint sets
n(A)=n(A-B)+n (AnB)
Similarly, n (B) =n (B-A) + n (A nB)
Adding (2) and (3), we get
n(A)+nB)=n(A-B)+n (B-A) + 2n (AN B)
=n(A-B)+n(B-A)+n(AnB)]+n(AnB)

n(A)+n (B)=n(AuB)+n (AnB)

= n(AuB)=n(A)+n (B)-n (AnB)
Proof of (2) Since A and B are disjoint sets

ANnB=¢=n(AnB)=0

nAuB)=n(A)+n(B)-0Oorn (AuB)=n (A) +n (B).

Proofof (6) L.HS.=n(AuBuUC)=n[Auv(BuCl)]
=n(A)+nBuC)-n[An(BuC()]
=n(A)+nB)+n (C)-n(BNnC)-n [(AnB)u(AnC)]
=n(A)+nB)+n(C)-n(BNnC)-[n(AnB)+n (AnC)

(1)

[ of (1)]

-n[(AnB)n(AnC)

=n(A)+nB)+n(C)-nBNnC)-n(AnNnB)-n(AnC)+n (AnBnNC)
nAuvBuUC)=n(A)+nB)+n(C)-n(AnB)-n (BN C)

-n(CnA)+n(AnBnC).



B.A. PART-III 14 MATHEMATICS : PAPER-III (OPT.])

Example 1.10 : In a group of 50 persons, 14 drink tea but not coffee and 30 drink tea.
Find
(1) How many drink both tea and coffee ?
(ii) How many drink coffee but not tea ?
Sol. Let T denote the set of persons drinking tea and C denote the set of persons
drinking coffee.
n(TuC)=50,n (T)=30,n (TNC =14
(1) nown (TNnC% =n (T)-n (TNnC)
: 14=30-n(TnC) =n(TNnC)=16
. number of persons drinking both tea and coffee = 16
(ii) Alson (TuC)=n (T)+n (C)-n (TnC)
: 50=30+n(C)-16 =n (C)=36
number of persons drinking coffee but not tea
=n(CNnTY=n(C)-n (CNT)
=n(C)-n(TnC)=36-16 =20
Example 1.11 : A survey of 500 television watchers produced the following information:
285 watch football, 195 watch hockey, 115 watch basketball, 45 watch football
and basketball, 70 watch football and hockey, 50 watch hockey and basketball, 50 do
not watch any of the three games.
How many watch all the three games ? How many watch exactly one of the
three games ?
Sol. Let F, H, B denote the sets of viewers who watch football, hockey, basketball
respectively.
n (F) =285,n(H)=195,n(B)=115,n (FnB) =45,
n(FNnH)=70,n(HNB)=50,n (FUHuUB)°=50
Also total number of viewers = 500
Now n (FUH UB)®=50
= 500-n (FUHUB) =350
= n (FUHUB) =450
= n(F)+nH)+nB)-n(F"H-nHNB)-n (BNnF)
+n (FnHnNB)=450
285+ 195+ 115-70-50-45+n (FnHNB) =450
n(FA~HNB)=20
number of viewers watching all the three games = 20.

Ul

Number of viewers watching football alone = n (F n H°n B€)
=n(F)-n(FNH)-n(FnB)+n (FNHNB)
=285-70-45+20 =190

Number of viewers watching hockey alone = n (H n F¢n B€)
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nH-nHNF)-nHNB+n (FNH N B)
195-70-50+ 20 =95
Number of viewers watching basketball alone = n (B n H°n F°)
nB)-nBnH -n(BnF)+n(FAHNB)
115-50-45+ 20 =40
number of viewers watching exactly one of the three games
=190 + 95 + 40 = 325.
Example 1.12 : Find how many integers between 1 and 60 are neither divisible by 2

nor by 3 and nor by 5 ?
Sol. Let A, B and C be the set of integers between 1 and 60 divisible by 2, 3 and 5
respectively.

n(AmBmC)={£}=2
2x3 x5
Number of integers between 1 and 60 which are divisible by 2, 3 or 5 are
=n (AuBuUC)
=n(A)+nB)+n(C)-n(AnB)+n(AnC)-nBnC)+n(AnBnC)
=30+20+12-10-6-4+2 =44
the number of integers between 1 and 60 that are not divisible 2, 3 or 5
= 60 - 40 = 16.
1.1.9 Languages & Grammars
Let A be a set whose elements are called letters. Then, A is known as Alphabet.
A word or string on the set A is a finite sequence of its elements.
For Example : u = ababb, v = accbaaa are words on alphabet A = {a,b,c}
The empty sequence of letters is denoted by A and it is known as empty word.
The length of word is written as |u| or [(u).
Ifu=aa,..a,then [(u) =n andif u = i, then [(u) = 0.
Now, we may define a language as -
Language : A language L over an alphabet A is collection of words on A. L is a subset
of A*, where A%is the set of all words on A.
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For Example : If A = {a,b}, then L ={a, ab, ab?,...} which consists of all words beginning
with a and followed by zero or more b's and L, = {a™b"; m > 0, n > O] which consists of all
words beginning with one or more a's followed by one or more b's, are languages over
A.
Grammar : A grammar consists of four parts
(1) A finite set V of elements called variables or non-terminals.
(2) A finite set T of elements called Terminals.
(3) An element S in V called the star symbol.
(4) A finite set P of productions. A production is an ordered pair (a, p) usually
written as a —  where a, B are words in V, T. At least one of the a or j
must contain a variable. Such a Grammar is denoted by G (V, T, S, P)
Terminals are denoted by a, b, c, .......... .
Variables are denoted by A, B, C, ........... .
S denotes the start variable.
a, B will denote words in both variables and terminals.

We write, o — (B, B, ------ B,) for
The production o - B, a = B,, ........ , o> B,
Types of Grammars :

(1) A type O grammar has no restrictions on its productions.

(2) A grammar G is of Type-I if every production is of the form o — 3 where
la| <[B].

(3) A grammar G is said t~ be of Type-2 if every production is of the form
A > Bi.e. the L.H.S ic .®non-terminal.

(4) A grammar G is said tobe of Type-3 if every production is of the form

A —> a or A > aB where L.H.S is a single non-terminal and R.H.S is a
single terminal or terminal followed by a non-terminal or of the form
S > A.

(5) A grammar G is said to be context sensitive if the production are of the
form oAa' — afa'i.e. we replace the variable A by p in a word only when
A lies between o and a'.

(6) A grammar G is said to be context free if the productions are of the form
A — B. (i.e. Replace variable A by P regardless of where A appears).

(7) A grammar G is said to be regular if the productions are of the form
A—>a A—>aB,S —>A\.

1.1.10Self Check Exercise

1. If A, B are two sets, then show that AuUB=¢ < A=¢,B=4¢.

2. Is it true that power set of A U B is equal to union of power sets of A and
B ? Justify.
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Prove the following :

(i)An(A°UB)=AnNB

(i) A- (B n C) = (A-B) U (A-C)

(i) A-BuC)=(A-B)n(A-C)

ivAn(B-C)=(AnB)-(ANnC)

Let A = [+, -], and B =[00, 01, 10, 11]

(a) List the elements of A x B

(b) How many elements do A*and (A x B)®have ?

If A and B be non-empty subsets, then show that A x B=B x Aiff A=B.
Use PMI to show that, n®+ 2n is divisible by 3, where n € N.

Prove that n?+n is even, where n € N. (Use PMI)

A class has a strength of 70 students. Out of it 30 students have taken
Mathematics and 20 have taken Mathematics but not Statistics. Find
(a) The number of students who have taken Mathematics and Statistics?
(b) How many of them have taken Statistics but not Mathematics ?

In a town of 10,000 families, it was found that 40% families buy
newspaper A, 20% buy newspaper B and 10% buy newspaper C. 5%
families buy A and B, 3% buy B and C, and 4% buy A and C. If 2% families
buy all the newspapers, find the number of families which buy (i) A only
(ii) B only (iii) none of A, B, and C.

Among integers 1 to 300, how many of them are divisible neither by 3,
nor by 5, nor by 7 ? How many of them are divisible by 3 but not by 5, nor
by 7 ?

Suggested Readings :

1.
2.

Dr. Babu Ram, Discrete Mathematics
C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill,
International Edition, Computer Science Series, 1986.

Discrete Mathematics, S. Series.

Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw Hill
Fifth Ed. 2003.
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LESSON NO. 1.2 Author : Dr. Chanchal

THE BASICS OF COUNTING & PIGEONHOLE PRINCIPLE

Structure :

1.2.1 Introduction

1.2.2 Fundamental Principle of Counting

1.2.3 Permutation

1.2.4 Practical Problems Involving Permutation
1.2.4.1 Circular Permutations

1.2.5 Combination

1.2.6 Practical Problems Involving Combinations

1.2.7 Theory of Probability

1.2.8 Pigeonhole Principle

1.2.9 Self Check Exercise

1.2.1 Introduction

Firstly, we define factorial n as :
Def : The product of all positive integers from 1 to n is called factorial n. It is denoted

by [n orn!.
For Example : |4 =4.3.2.1 =24

Note : (i) [n=nn-1)(n-2)(n-3)....3.2.1=nn-1

(i) [0=1[1=1
(iii) Factorial of proper fraction and negative integer is not defined.
l2n .
Example 1 : Prove that E =1.3.5........ (2n-1).2

18
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Sol. LHS - 2n _1.2.3.4.56......(2n - 1) (2n)

n n
[1.35....... (2n-1)][2.4.6......... (2n)]
) n
_[135.20-1)] .27 [1.2.3......... n]

I

_[1.355......(2n-1)].2"|n
) n

1.2.2 Fundamental Principle of Counting
If one operation can be performed in 'm' different ways and if corresponding to each of

=1.3.5......... (2n-1)2" =RHS.

these m ways of performing the first operation, there are 'n' different ways of
performing the second operation, then the number of different ways of performing
the two operations taken together is m x n.
Example 2 : How many numbers can be formed from the digits 1, 2, 3, 9 if repetition
of digits is not allowed ?
Sol. (a) Numbers with one digit : There are four digits, hence four numbers of one
digit can be formed with the help of these digits.
Hence, number of one digit numbers = 4.
(b) Numbers with two digits : First place of two digit number can be filled in 4 ways
and the second place can be filled in 3 ways.
Hence, number of two digit numbers = 4 x 3 = 12.
(c) Numbers with three digits :
Number of three digits number = 4 x 3 x 2 = 24,
(d) Number with four digits :
Number of four digits numbers =4 x 3 x 2 x 1 = 24,
Hence, total number of digits formed with the given digits
=4+ 12 + 24 + 24 = 64.

Example 3 : Given 5 flags of different colours, how many different signals can be
generated if each signal requires the use of 2 flags, one below the other ?
Sol. Number of flags = 5

Number of flags required for a signal = 2
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First place of signal can be filled in 5 ways and corresponding to each way of filling
the first place, there are four ways of filling the second place.

by fundamental principle of counting.
total number of signals generated = 5 x 4 = 20.
1.2.3 Permutation
Def : It is an arrangement that can be made by taking some or all of a number of
given things. It is denoted by "P, which means number of permutations of n different

In

n-r-

things taken 'r' at a time. Further, P, =

Illustration : Consider three letters a, b, c. Now, the permutations of three letters
taken two at a time are : ab, bc, ca, ba, cb, ac, which are 6 in number.

Mathematically, »np _3p 13 :ﬁ:
r 2
3-2 1
Note : "P_is also writen as P (n, 1)
Example 4 : Find n if P (2n, 3) = 100 P (n, 2).
Sol. Since P (2n, 3) = 100 P (n, 2)
>*P,= 100 "P,= (2n) (2n-1) (2n-2) = 100 n (n-1)

= 4n (n-1) (2n-1) = 100n (n-1) = 2n-1 =25

= n=13
1.2.4 Practical Problems Involving Permutation
Example 5 : How many words, with or without meaning, can be formed using all the
letters of the word EQUATION, using each letter exactly once. Further, how many
words can be formed if each word is to start with a vowel.

Sol. Number of letters is EQUATION = 8
No. of letters to be taken at a time = 8

required no. of words = °P, =ﬁ=8><7><6><5><4><3><2><1:40320

lo

Further, vowels in EQUATION are E,U, A, I, O i.e. 5 vowels. If the first place is to be
filled with vowel, it can be filled in 5 ways. Now, remaining 7 places can be filled up

with 7 letters in |7 or P_ways.

required no. of words = 5 x |7 =5 x (7x6x5x4x3x2x1) = 25200

Example 6 : In how many ways can 5 books on Chemistry and 4 books on Physics be
arranged on a shelf so that the books on same subject remain together ?
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Sol. Consider the 5 books on Chemistry as one book and also 4 books on Physics as
one book.

two books can be arranged in |2 ways
Also the 5 books on Chemistry can be arranged among themselves in |5 ways and 4
book on Physics in themselves in |4 ways.

required number of ways = [2x|5x |4

=2x1)x(5x4x3x2x1)x(4x3x2x1)
=2 x 120 x 24 = 5760.
Example 7 : In how many ways can 4 boys and 3 girls be seated in a row so that two
girls are together ?
Sol. Let4 boystheB,, B, B,, B,
X le B2>< B3>< B4x
no two girls are together
three girls can be arranged in 5 'x' marked places in °P, ways.

Also 4 boys can be arranged among themselves |4 ways

required number of ways = °P, x |4

=(5x4x3)x(4x3x2x1)
=60 x 24 = 1440
Example 8 : How many numbers greater than 40000 can be formed using the digits
1, 2, 3, 4 and 5 if each digit is used only once in each number ?
Sol. Given digits are 1, 2, 3,4, 5
number of given digits = 5
Number of digits to be taken at a time = 5
Since number is to be greater than 4000
first digit from left should be either 4 or 5
i.e. first place can be filled in 2 ways.
Remaining 4 places with 4 digits can be filled in *P, ways
required numbers = 2 x *P, =2 x (4 x 3 x 2 x 1) = 2 x 24 = 48,
Example 9 : How many different signals can be formed with five given flags of different
colours ?
Sol. Number of flags = 5

A signal may formed by hoisting any number of flags at a time.
Number of signals by hoisting one flag at a time = °P,

Number of signals by hoisting two flags at a time = °P,
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Number of signals by hoisting three flags at a time = °P,
Number of signals by hoisting four flags at a time = °P,

Number of signals by hoisting five flags at a time = 5P,
total number of signals formed
= SP)1 + 5P)2 + SPS + 5P)4 + SPS
=5+20+ 60+ 120 + 120 = 325.
Result : The number of permutations of n things taken all at a time when p of them
are alike and of one kind, q of them are alike and of second kind, all other being

In
different is given by IEXB

Example 10 : How many permutations of the letter of word APPLE are there ?
Sol. No. of given letters = 5
No. of P's =2

. required no. of permutations = E = M =60

2 2x1

Example 11 : How many numbers greater than 1000000 can be formed by using the
digits 1, 2, 0, 2, 4, 2, 4.
Sol. Given digits are 1, 2,0, 2, 4, 2, 4
total number of digits = 7
with Number of 2's = 3 and Number of 4's = 2
Number of digits to be taken at a time = 7

[7  7x6x5x4x|[3

_ - =420
numbers formed [3x[2 [3x (1x2)

These numbers also include those numbers which have O at the extreme left position.

6 6x5x4x|3
Numbers having O at the extreme left position = [3x[2 = [3x(1x2) =

required number of numbers = 420 — 60 = 360.
1.2.4.1 Circular Permutations

Find the number of ways in which n persons can be arranged at a round table.
Proof : When n persons are sitting around a circular table, then there is no first and
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last person. Let us fix the position of one person. The remaining (n—1) persons can be

arranged in the remaining (n-1) places in *'P__ i.e., [n-1 ways.
required number of ways = [n—-1.

Clockwise and Anti-clockwise Permutations
The total number of circular permutations can be divided into two types :

(i) Clockwise (ii) Anti-clockwise.
In two such arrangements each person has the same neighbour though in the reverse
order and either of these arrangements can be obtained from the other by just over-
turning the circle. If in this case, no distinction is made between clockwise and anti-
clockwise arrangements then the two such arrangements are considered as only

one distinct arrangement.
. . . 1
Hence the number of circular permutations in such cases =§ n-1

Note. Questions on necklaces with beads if different colours are to be tackled, by the
above formula, as in this case also there is no difference between clockwise and
anticlockwise arrangements.
Example 12 : In how many ways can 8 girls be seated at a round table provided Parveen
and Vipul are not to sit together ?
Sol. Total number of girls = 8.

number of ways in which they can be arranged on a round table

=|8-1=[7=7x6x5x4x3x2x1=5040

Consider two girls Parveen and Vipul as one. Therefore 7girls can be arranged in

7-1=|6 ways. Also the two girls can be arranged among themselves in |2 ways.

number of arrangements in which two particular girls are always

together
:|§x|2:(6><5><4><3><2><1)><(2><1):1440

required number of arrangements = 5040 — 1440 = 3600.

1.2.5 Combination

Def : It is a group (or selection) that can be made by taking some or all of a number of
given things at a time. It is denoted by "C_which means number of combinations of n

n _ m
“ k-

Illustration : Consider three letters a,b, c. The groups of there 3 letters taken two at

different things taken 'r' at a time. Further,
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a time are ab, bc, ca. As far as group is concerned ac or ca is the same group because
in a group, we are concerned with the number of things contained unlike with the
case of arrangement where we have to consider the order of things also.

Note : (i) "C =rC_
(ii) ncr_,_ ncF1 = n+1cr
(iii) The total number of combinations of n different things by taking
some or all at a time i.e. "C + "C,+ "C + .......... +"C_is given by 2"-1.

The above results can be proved very easily and left as an exercise for the reader.
1.2.6 Practical Problems Involving Combinations
Example 13 : A mathematics paper consists of 10 questions divided into two parts I
and II. Each part containing 5 questions. A student is required to attempt 6 questions
in all, taking at least 2 questions from each part. In how many ways can the student
select the questions ?
Sol. Number of questions in part I =5

Number of question in part I = 5

Part I Part II Total
2 4 6
3 3 6
4 2 6

Number of questions to be attempted = 6
each selection contains at least 2 from each part
. different possibilities are
(i) 2 from part 1, 4 from part II
(ii) 3 from part 1, 3 from part II
(iii) 4 from part 1, 2 part II
: required number of ways

=°C,x°C, +°C,x°C, + °C, x °C,
=°C,x °C, +°C,x °C, + °C, x °C,

5x4 5 5x4 5x4 5 5x4
= X =+ X +x
1x2 1 1x2 1x2 1 1x2

=10x5+10x 10+ 5 x 10 =50 + 100 + 50 = 200.
Example 14 : A committee of 5 is to be selected from among 6 boys and 5 girls.
Determine the number of ways of selecting the committee if it is to consist of at least
1 boy and 1 girl.
Sol. Number of boys = 6, Number of girls = 5
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Boys=6 Girls=5
1 4
2 3
3 2
4 1

Committee is to be formed of 5.
committee is to include at least 1 boy and 1 girl
different possibilities are
(i) 1 boys, 4 girls (ii) 2 boys, 3 girls
(iii) 3 boys, 2 girls  (iv) 4 boys, 1 girl
: required number of ways
=°C x°C,+ °C,x °C_ + °C_ x °C, + °C, x °C,
=°C x °C + °C,x °C,+ °C_ x °C, + °C, x °C,

6 5 6x5 5x4 6x5%x4 5x4 6%x5 5
=—x=+ X + X + X =
1 1 1Ix2 1x2 1x2x3 1x2 1x2 1

=30+ 150 + 200 + 75 = 455.
Example 15 : The number of diagonals of a polygon is 20. Find the number of its
sides.
Sol. Let number of sides of polygon = n, .. Number of points =n

:n(n—l)

Number of lines formed = "C, 2

n(n—l)_rl

number of diagonals = 5

nn-1
From given condition, % -n=20

R n’-n-2n =40 = n’-3n-40=0

= (n-8) n+5)=0 = n=8,-5

Rejecting n = -5 as number of sides cannot be negative, we get, n = 8

number of sides = 8.

Example 16 : Ram has 5 friends. In how many ways can be invite one or one of them
to a party ?
Sol. Number of friends = 5

Ram can invite one friend, two friends, three friends, four friends, four friends

or five friends.
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required number of ways °C, + °C,+ °C_+ °C, + °C,

°C o+ Scz +°C,+ °C, + °C,

S 5x4 5x4 5
+—F—+—+1
1 1x2 1x2 1

5+10+10+5+1=31.
1.2.7 Theory of Probability

The word "proable” means "likell", or "most likely to be true". In other words, we have
an uncertain situation, where we cannot predict in advance what is going to happen.
The probability theory provides a mathematical model to study the uncertain
situations. Consider the following simple examples. Suppose, we toss a coin on the
floor. Then, either a head or a tail may show up. We cannot predict in advance whether
a head or a tail will show up. Consider now a die. A die is a cube which has six faces.
Let these faces be numbered as 1,2,3,4, 5 and 6. If the die is thrown, then any one of
the six faces can turn up. Again, we cannot predict in advance which number is
going to turn up. Consider a pack of 52 playing cards. Assume that we have shuffled
the pack of cards and a card is drawn. Again, we are not sure which card it will be.
Now, we define certain terms related to probability.

Random Experiment :

Random means "haphazard". Any experiment happening under uncertain situations
or conditions is called a random trial or a random experiment. It is also known as called
an experiment of chance. The three examples which we have described earlier viz. -
result of tossing a coin, result of throwing a dice, result of drawing a card from a pack
of 52 playing cards - are random events or random experiments. In all these
experiments, there are more than one possible outcomes, but we are not sure which
one of these outcomes will actually occur. Thus, the theory of probability may be
defined as that branch of mathematics where we investigate and discuss various
rules for random experiements.

Event :

Any question that we ask with regard to a random experiment defines an event.
Elementary Events :

Suppose that we have conducted a random experiment. It is completely defined when
we know all the possible outcomes. Each outcome of this experiment is called an
elementary event. Suppose that a dice is thrown. The appearance of any number i (i
= 1,2,34,5,6) is an elementary event and there are six elementary events in this
experiment. If a coin is tossed, then either a head (H) or a tail (7) may turn up.
Therefore, head or tail are the two elementary events of the experiment of tossing a
coin.
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Sample Space :
Sample space of a random experiment is the set of all the possible outcomes, that is,
the set of all elementary events of that experiment. We assume that this set is finite.

Let E denote the random experiment and e, e e denote all the possible out-

PERRERE

comes. Then, the simple space S of the experiment is the set S = (e, e

b Egrenens )
Obviously, each element of the set is a possible outcome and each outcome of a trial
corresponds to only one element of the set S.

Consider the following random experiments :

1. A coin is tossed. There are two possible outcomes, either a head (H) or a tail (7)
may turn up. Hence, the sample space of the experiment contains two
elementary events H, T and therefore, S = (H,T).

2. Consider the random experiment of throwing a dice and noting the resulting
number. The experiment can result in turning up of any one of the six numbers
1,2,3,4,5,6, which are the elementary events of the experiment. Hence, the
sample space of the experiment is S = {1,2,3,45,6}.

3. Let two coins be thrown simultaneously. Then, the first coin may show up
either H or T and the second coin may also show up either H or T. Denote by
HT, the case of a head turning up on the first coin and a tail turning up on the
second coin. Similarly, we define HH, TH and TT. The possible outcomes of the
experiment are HH, HT, TH and TT, which are the elementary events of the
experiment. Hence, the sample space is S = {HH, HT, TH, TT;}.

Sure Event (Universal event) :

The sample space S of an experiment is the set of all possible outcomes. Since, a set

is also a subset of itself, S can also be considered as representing an event associated

with the experiment. Now, since every outcome belongs to S, the event represented
by the set S always occurs. Therefore, the event represented by S is called a sure
event.

Impossible event :

An empty set ¢ is always a subset of a set S. Hence, the empty set ¢ can always be

considered as representing an event of an experiment. But, there is no outcome of

the experiment which can belong to ¢. Hence, the event represented by ¢ is called an
impossible event.

Consider again, the example of throwing two dice simultaeously. Let an event B be

defined as "the sum of the numbers on the faces is greater than or equal to 2". Since,

the sum of the smallest numbers of the two faces is 2, the sum of the two numbers
appearing on the two faces is always greater than or equal to 2. Hence, the set of
outcomes is same as the sample space S. Therefore, the event B is a sure event.

Define another event A as "the sum of the numbers is greater than 12". Since, the
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sum of the largest numbers of the two faces is 12, the sum of the two numbers appearing

on the two faces can never be greater than 12, Hence, the set of outcomes of the

event A is ¢. Therefore, A is an impossible event.

Equally likely events

Let S be the sample space of a random experiment. If all the elementary events of S

have the same chance of occuring, then the events are said to be equally likely

events.

Mutually exclusive events

Consider the example of throwing two dice simultaneously, and the sum of the two

numbers is noted. Define the events A and B as

A : the sum of the two numbers appearing on the dice is less than or equal to 4.

B : the sum of the two numbers appearing on the dice is greater than 9.

The set E,| of outcomes of the event A is E = {2, 3, 4}. The set E, of outcomes of the

event Bis E, = {10, 11, 12}. The sample space of the experiment is
S$=1{2,3,4,5,6,7,8,9,10, 11, 12}.

We find that E, N E = ¢ and hence, the sets E , E, are disjoint. We then say that the

event A and B are mutually exclusive. That is, when one event has occured, the

other event cannot occur or the two events cannot occur together. If the events

associated with an experiment are mutually exclusive, then the subsets of the sample

space representing the events are disjoint. The converse is also true. That is, if the

subsets representing the events of an experiment are disjoint, then the events are

said to be mutually exclusive.

Mutually exhaustive events (Definition) :

Let S be the sample space of a random experiment and A, A,,...... A_ be the events

defined on the sample space. If A/ U A, U ... UA = S, then the events are said to be

exhaustive. If further A, N A= 0, i # j, then the events are said to be mutually exclusive

and exhaustive.

Combination of events

We now consider combination of events defined in an experiment. This can be done

by using the operations "or", "and", "not". Let us first consider an example. Consider

the experiment of throwing two dice simultaneously and noting the total of the numbers

that have turned up. Define the events

A : the sum of the two numbers is less than or equal to 5,

B : the sum of the numbers satisfy, 4 < sum < 8,

C : the sum of the numbers satisfy, 5 < sum < 8.

Let E, E,and E, denote the sets of outcomes of the events A, B and C respectively.

Now, E =1{2,3,4,5}, E,= {4,5,6,7,8}, E, = {6,7}, while the sample space is S={2,3,....12}.

We define the event A or B as the event which occurs when either A or B or both
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occur. In set notation, we denote this operation as AUB. The set representing AUB in
the above example is E = E, UE, = {2,3,4,5,6,7,8}.

We define a new event A and B, as the event which occurs when A and B both occur.
In set notation, we denote this operation by A M B. In the above example, the set
representing ANBisE=E NE,={4,5}.

We define the event not A, as the event which occurs when A does not occur. If E, is
the set representing the event A, then the set representing not A contains all elements
of the sample space S which do not belong to E,. Thus, not A is represented by the

complement in S of the set E, which can be written as Ef or :-"1. Often, not A is also

called the complementary event of A, or the negation of A.
Suppose that E, E_are the subsets of a sample space and we have E,C E,. The subsets
E,and E, represent the outcomes of the events B and C respectively. We define the
event C B as "the event C implies the event B" or if the event C occurs, then the
event B must occur.
We also define an event A - B as "the event A but not B".
Probability of an Event :
To every event in a random experiment we attach a numerical value which is called
its probability. We denote the probabilities of the events A and B by P(A) and P(B)
respectively. We say that P(A) > P(B), if the event A is more likely to occur, than the
event B. Obviously, every event is more likely to occur than the impossible event ad
is less likely to occur than the sure event. Hence, the impossible event must have
the smallest probability and the sure event must have the largest probability. By
convention, we assign the value O to the probability of the impossible event and the
value 1 to the probability of the sure event. Hence, the probability of an event A
satisfies the inequality.
O0<PA)<1.

This result is an axiom of calculus of probability.
We now need a rule to compute the value of the probability of an event.
Let the sample space S contain n elementary events e, that is

S={e,e,e,... e}
By definition, Ple) > 0,i= 1,2,...... ,n. Assume now, that all the elementary events are
equally likely to occur when the experiment is performed.
Let the set of outcomes E represent an event A. If the experiment produces an outcome
which belongs to E, then the event A is said to have occured. Let n and m, (m < n) be
the number of elementary events in the sample space S and E respectively. Since, all
the elementary events are equally likely to occur, we define the probability of the
event A as
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number of events favourable to A m

P(A) = p = =3

total numbsrof squally liksly svents n

Example 1. What is the chance that a leap year selected at random will contain 53
Sundays. (B.C.A. 2011)
Sol. Leap year contains 366 days.

. there are 52 complete weeks and two days other. The following are the possibilities
for these two 'over' days :

(i) Sunday and Monday (ii) Monday and Tuesday
(iii) Tuesday and Wednesday (iv) Wednesday and Thursday
(v) Thursday and Friday (vi) Friday and Saturday

(vii)  Saturday and Sunday.

Now there will be 53 Sundays in a leap year when one of the two over days is a
Sunday.

. out of 7 possibilities, two are favourable to this event.

2
". required probability = 7

Example 2. Two cards are drawn at random from a well-shuffled pack of 52 cards.

1

Show that the chances of drawing two aces is 391

Sol. Total number of cards = 52.
Two cards out of 52 cards can be drawn in **C, ways.
52x 51
1x2
Now 2 aces out of 4 aces can be drawn in *C, ways.
4x3

.. total number of favourable outcomes = *C, = = 6.

1x2

.. total number of outcomes = **C, = = 1326.

6 1
. required probability = 1326 ~ 221 °

Art-1. Addition Theorem for Mutually Exclusive Events
If A and B are two mutually exclusive events associated with a random experiment,
then

P(Aor B) =P (A) + P (B)
Proof : Let n be the total number of exhaustive, equally likely cases of the experiment.
Let m, ad m, be the number of cases favourable to the happening of the events A and
B respectively.

my MmMa
P(A) = 5 P(B) = 0 -
Since the events A and B mutually exclusive.
there cannot be any sample point common to both events A and B.
the event A or B can happen in exactly m, + m, ways.
'7n1+'m: mp My

P(Aor B)= —_— =7 "+ "=P(A) + P(B)
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P(A or B) = P(A) + P(B)
Note : The result of this theorem can be extended to any number of mutually exclusive
events.
Art-2. If A and B are two events associated with a random experiment, then
P(AUB) =P(A) + P(B) - PIANB)
Proof : Let n be the total number of exhaustive, equally likely cases of the experiment.
Let m, and m, be the number of cases favourable to the happening of the
events A and B respectively.
my
P(A) =", PB)="".

ra

Let m, be the number of sample points common to both A and B.
mj
P(ANB) = -
Now m, sample points, which are common to both the events A and B, are
included in the events A and B separately.
total number of sample points in the event A UB = m, + m, - m,
my+m,—mg My My Mg
PAUB) ==~ =7 + > o = P(A) +P(B)-PANB)
P(A UB) =P(A) + P(B) - P(A N B)
Cor. If A and B are mutually exclusive events,
then ANB=¢
PANB)=0
P (AUB)=PA)+PB)
Now, the students can easily prove that :

(a) P(4) = 1 - P(A)

(b) P(A N B) = P(B) - P(ANB)

(c) P(A N B)=P(A) - P(ANB)

(d) P(AUBUC)=P(A) +PB)+P(C)-PANB) - P (BNC) - P(CMA) + PANBNC)
Example 3. Find the probability of 4 turning for at least once in two tosses of a fair
die.

Sol. Here S = {(1,1), (1,2),.....(6,5), (6,6)}

Let two events A and B be

A : 4 on first die

B : 4 on second die

A={41), (4,2), (4,3), (4,4), (4,5), (4,6)}

B ={(1,4), (2,4), (3,4), (4,4), (5,4), (6,4)}

ANB={4,4)}

6 6 5 |

36 PB) = 36 P(ANB) = 36

P (4 at least on one die) = P(A U B) = P(A) + P(B) - P(ANB)
6 6 1 11

~3 3 36 36

P(A) =
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Independent Events

Two events E and F defined on the sample space S of a random experiment are
said to be independent if

P(E and F) = P(E) P(F)

Two events E and F are said to be dependent if they are not independent

i.e. if P(E N F) #P(E) P(F)
Example 4. A die is thrown and 6 possible outcomes are assumed to be equally likely.
If E is the event : "the number appearing is a multiple of 3" and F the event : "the

number appearing is even". Show that E and F are independent events.
2
g~

1
Sol. P(E)=P(3,6) = =3

SR

3
P(F) = P({2,4,6}) = 6

1
P(ENF) =P(6)) = ¢

1 £.3
Now = = 2X 5

6 3 2
.. P(ENF)=P(E). P(F)
Multiplication Theorem on Probability
If E and F are two events associated with a random experiment, then
P(E NF)=P(E) P(F|E), provided P(E) # 0.
or P(E NF) = P(F) P(E | F), provided P(F) # 0.
Example 5. A bag contains 5 white, 7 red and 4 black balls. If four balls are drawn one
by one with replacement, what is the probability that none is white?
Sol. Number of white balls = 5
Number of black balls = 7
.. total number of balls = 5+7+4=16
i . R LS (11)
-white) = —X —X—Xx— =|—
P(all four balls as none-white) 16~ 1616 16 16
Example 6. A husband and wife appear in an interview for two vacancies in the same
1 1
post. The probability of husband's selection is 7 and that of wife's selection is 5 What

is the probability that
(i) both of them will be selected? (ii) only one of them will be selected?
(iii) none of them will be selected?

1.2.8 Pigeonhole Principle

Simple Form : If n pigeons are assigned to m pigeonholes and m < n, then there is at
least one pigeonhole that contains two or more pigeons.

Proof : Label n pigeons with the numbers 1 to n and m pigeonholes with the numbers
1 to m. Starting with pigeon 1 and pigeonhole 1, assign each pigeon in order to the
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pigeonhole with the same number. So we can assign as many pigeons as possible to
distinct pigeonholes. Since the number m of pigeonholes is less than the number n
of the pigeons, so n — m pigeons are left that are not assigned to a pigeonhole.
Therefore, there is atleast one pigeonhole that will be assigned one or more than one
pigeon again.
there is at least one pigeonhole that contains two or more pigeons.

Extended Form : If n pigeons are assigned m pigeonholes, where n is sufficiently
large as compared to m, then one of the pigeonholes must contain at least

[ 1} !
1 pigeons.
m

Proof : Assume that the result is false

n-1
each pigeonhole does not contain more than {T} pigeon.

. . . n-1 n-1
maximum possible number of pigeons = m< .m
m m

=n-1

This contradicts the given result that number of pigeons is n.

our supposition is wrong.

Hence the result.
Example 7 : Use Pigeonhole Principle to show that if seven numbers from 1 to 12 are
chosen, then two of them will add upto 13.
Sol. The sets which add upto 13 are

{1, 12}, {2, 11}, {3, 10}, {4, 9}, {5, 8}, {6, 7}.

By Pigeonhole principle, if we have to choose seven numbers then we must take at
least two numbers belonging to one set. Thus two of the seven numbers will definitely
add upto 13.
Example 8 : Use Pigeonhole Prinicple to prove that an injective mapping cannot
exist between a finite set A and a finite set B if Cardinality of A is greater than
Cardinality of B.
Sol. Letn (A) =a, n(B) =b where a > b.

Consider elements of Set B as pigeonholes and elements of set A as pigeons.
As no. of pigeons are more than pigeon holes so at least two pigeons will have same
pigeonholes or we can say 3 x, y ¢ A such that f (x) = f(y), butx#y.

f: A —» B is not injective.
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Example 9 : How many people among 200000 people are born at same time (hour,

minute, seconds) ? Use Pigeonhole principle to find it.

Sol.

Total number of persons = 200000

Total number of seconds in a day = 24 x 60 x 60 = 86,400
Here, we have to assign a time to each person

So person are like pigeons, time is like pigeonhole.
Number of pigeons (n) = 200000

Number of pigenholes (m) = 86,400

Min. number of persons having same birthday

_ [n— 1} 1o [200000 - 1} 1 [1,99,999
m 86400 86400

}+1:2+1=3_

1.2.9 Self Check Exercise

2" [1.3.5. e (2n-1)]
In

In how many different ways, the letters of the word ALGEBRA can be

Prove that C(2n,n)=

arranged in a row if two A's are never together ?

Find the number of different 8 letter words formed from the letters of
word TRIANGLE if each word is to have both consonants and vowels
together.

In how many ways 4 boys and 4 girls be seated at a round table provided
each boy is to be between two girls ?

A group consists of 4 girls and 7 boys. In how many ways can a team of 5
numbers be selected if the team has (i) no girls ? (ii) atleast one boy and
one girl ?

There are 15 points in a plane 1 no three of which are in the same
straight line excepting 4, which are collinear. Find the no. of (i) straight
lines (ii) triangles, formed by joining them.

A sport team of 11 students is to be constituted, choosing atleast 5 from
class XI and atleast 5 from class XII. If there are 20 students in each of
these classes, in how many ways can the team be constituted.

How many people must you have to guarantee that atleast 12 of them
will have birthdays on the same day of the week ? Use pigeonhole
principle.

Use pigeonhole principle to show that if seven numbers from 1 to 12 are
chosen, then two of them will add upto 13.



B.A. PART-III 35 MATHEMATICS : PAPER-III (OPT. I)

Suggested Readings :

1. Dr. Babu Ram, Discrete Mathematics

2. C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill,
International Edition, Computer Science Series, 1986.

3. Discrete Mathematics, S. Series.

4. Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw Hill

Fifth Ed. 2003.



B.A. PART-III MATHEMATICS : PAPER-III (OPT.I)
SEMESTER-V DISCRETE MATHEMATICS-I

LESSON NO. 1.3 Author : Dr. Chanchal

RELATIONS AND FUNCTIONS

Structure :

1.3.1 Introduction

1.3.2 Types of Relation

1.3.3 Composition of Relations
1.3.4 Closures of Relations

1.3.5 Equivalence Class

1.3.6 Representing Relations
1.3.7 Introduction to Functions
1.3.8 One-One and Onto-Functions
1.3.9 Types of Functions
1.3.10Composition of Functions
1.3.11Invertible Function
1.3.12Floor and Ceiling Functions
1.3.13Self Check Exercise

1.3.1 Introduction

As we have already studied about the cartesian product of two sets in set theory,
discussed in Lesson No. 1. In continuation to that, we can define a relation as :
Def. Relation : A relation from a set A to a set B is defined as a subset of A x B.
Therefore each subset of A x B is a relation from A to B. If R is a relation from a set
A to set B and if (a, b) € R for some a € A and b € B, then we say that a is related to
b and we write it as a R b. If (a, b) ¢ R then we say that a is not related to b and we
write it as a R b.

Domain and Range of a Relation

If R is a relation from a set A to a set B. Then the set of the first components of the
elements of R is called the domain of R and the set of the second components of the
elements of R is called the range of R.

36
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Thus, domain of R={a: (a, b) € R}, and range of R={b : (a, b) € R}.
If R is a relation from a set A to the set A, then R is called a relation on A. Thus a
relation on a set A is defined as any subset of A x A.
For Example : For any a, b € N, the set of natural numbers, define a relation R by a
R b if a divides b.

Then, R ={(1, 1), (1, 2), (1, 3), ...... , (2, 2), (2, 4),....... (3,3),(3,6),........ }

R is clearly a subset of N x N and hence a relation on N.

Here, (1, 2) € R since 1 divides 2 but (2, 1) ¢ R since 2 does not divide 1.

1.3.2 Types of Relation

I. Reflexive Relation
Def. : A relation R on a set A is called a reflexive relation if (x, x) e Rforallx e Ai.e.,
if x R x for every x € A.
For Example : Let A = {1, 2}.

Then A x A= {1, 1), (1, 2), (2, 1), (2, 2)}.

Let R = {(1, 1), (2, 2), (1, 2)}.

Clearly R c A x A and so R is a relation on the set A.

Since (x, X) €e RV x € A, so R is a reflexive relation on A.
II. Symmetric Relation
Def. : A relation R on a set A is called a symmetric relation if a R b = b R a where a,
b eAi.e., if (a, b) e R = (b, a) € R where a, b € A.
For Example : Let A = {1, 2, 3}

Then Ax A={(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3,), (3, 2), (3, 3)}

Let R={(1,1),(1,3),(3, 1)}

Clearly, R ¢ A x A and therefore, R is a relation on A.

Since (X, y) € R = (y, X) € R, therefore R is a symmetric relation on A.
III. Transitive Relation
Def. : A relation R on a set A is called a transitive relation if

aRb, b Rc=>aRcVa,b,c €R,

i.e, if (a, b) e Rand (b, ¢c) e R = (a, c) € R where a, b, c € A.
For Example : For a, b € N, the set of natural numbers, define a R b if
2a + b=10.
The natural numbers a and b satisfying the relation 2a + b = 0 are given by :

a=1,b=8a=2,b=6;a=3,b=4;a=4,b=2
R ={(1, 8), (2, 6), (3, 4), (4, 2)}

Since (3, 4) € R and (4, 2) € R but (3, 2) ¢ R. Therefore R is not a transitive relation.
IV. Anti-Symmetric Relation
Def. : A relation R on a set A is called an anti-symmetric relation ifa Rband bR a
implies that a = b.
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i.e.,if (a, b) e Rand (b, a) e R=>a =b.
Note : Identity relation on a set is symmetric as well as anti-symmetric.
For Example : For a, b € N, the set of natural numbers, define a R b if a <b.
Let a, b € N such that a R b and b R a.
a<bandb<a. = a=b.

R is an anti-symmetric relation.

V. Equivalence Relation

Def. : A relation R on a set A is called an equivalence relation if R is reflexive,
symmetric and transitive.

For Example : Let X be the set of all triangles in a plane.

For any two triangles A and A,in X define A R A, if A, and A, are congruent triangles.
Then

(i) R is Reflexive: Since each triangle is congruent to itself, so A R A for each A in X.
(ii) R is Symmetric : Let A and A, € X such that A R A,. Then A,and A are congruent
triangles. Hence A, R A,.

(iii) R is Transitive : Let A, A,, A, € X such that A RA,and A,R A, i.e., A, A, are
congruent triangles and so are A, and A,. This implies that the A and A, are also
congruent triangles. Hence A R A..

So, R is reflexive, symmetric and transitive.

Therefore, R is an equivalence relation on X.

VI. Partial-Order Relation : A relation R on a set A is called partial order
relation if it is reflexive, anti-symmetric and transitive.

For Example : For a, b € N, the relationR defined by a R b if a < b, is partial-order
relation.

VII. Some other Relations on a Set

Def. Void Relation : Since ¢ is a subset of A x A, therefore the null set ¢ is also a
relation in A, called the void relation in a set A.

Universal relation in a set: Let A be any set and R be the set A x A. Then R is
called the universal relation in A.

Identity relation in a set : Let A be any set. Then the relation R defined by

R = {(a, a) : for all a € A} is called identity relation in A. It is usually denoted by I,.
Compatible Relation. A relation R in A is said to be compatible relation if it is
reflexive and symmetric.

VIII. Inverse of a Relation

The inverse of a relation R, denoted by R™, is obtained from R by interchanging the
first and second components of each ordered pair of R.

Therefore, R = { (a, b) : (b, a) € R}.
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If R is a relation from a set A to set B, then R™! is relation from the set B to the set A.
. Domain of R! = Range of R and Range of R! = Domain of R.
For Example : Let A = {1, 2, 3} and Let R = { (1, 2), (1, 3), (2, 3), (3, 2)}.
Then R is a relation on the set A, since R c A x A.

R =1{(2,1),(3,1),(3,2), (2, 3)}
Example 1 : Give an example of a relation which is reflexive but neither symmetric
nor transitive.

Sol. LetA=1{2, 3, 4.
Then A x A ={(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}
Let R={2,2),(3,3),(4,4),(2,3),(4,3),(3,4)
Since R ¢ A x A, therefore R is a relation on A.
R is reflexive since (a, a) e RV a € A.
R is not symmetric since (2, 3) € R but (3, 2) ¢ R.
R is not transitive since (2, 3) and (3, 4) € R but (2, 4) ¢ R.

Further R is not anti-symmetric since (3, 4) and (4, 3) € R but 3 # 4.
Example 2 : Give an example of a relation which is symmetric but neither reflexive
nor transitive.

Sol. LetA={1, 2}.

Then AxA={(1,1),(1,2),(2,1), (2, 2)}.

Let R={(1,2),(2, 1)

Then R < A x A and hence R is a relation on the set A.

R is symmetric since (a, b) e R = (b, a) € R.

R is not reflexive since 1 € A but (1, 1) ¢ A.

R is not transitive since (1, 2) € R, (2, 1) eRbut (1, 1) ¢ R

R is not anti-symmetric since (1, 2) e R and (2, 1) € R but 1 # 2.

Example 3 : The relation R ¢ N x N is defined by (a, b) € R if and only if 5 divides
b — a. Show that R is an equivalence relation.
Sol. The relation R ¢ N x N is defined by (a, b) € R if and only if 5 divides b — a.
This means that R is a relation on N defined by, if a, b € N then (a, b) € R if and only
if 5 divides b — a.
Let a, b, c belongs to N. Then
(i) a-a=0=5.0.
S divides a — a.
= (a, a) e R. = R is reflexive.
(i) Let (a, b) € R.
: S divides a — b.
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= a-b=5nforsomeneN. = b-a=>5(-n).
= S divides b — a = (b, a) e R.
R is symmetric.
(iii) Let (a, b) and (b, c) € R.
S divides a— b and b - ¢ both
a-b=5nandb-n°=5n, for some n and n,e N
(@-b)+(b-¢)=5n+5n, = a-c=5(n +n)
= S divides a - ¢
= (a,c) eR

R is transitive relation in N.
Example 4 : Prove that the intersection of two equivalence relations on a non-empty
set is again an equivalence relation on that set.
Sol. Suppose that R and R, are two equivalence relations on a non-empty set X.
First we prove that R, n R, is an equivalence relation on X.
(i) R, "R, is reflexive :
Let a € X arbitrarily.
Then (a, a) € R, and (a, a) € R,, since R, R, both being equivalence relations
are reflexive.
So, (@, a) e R, NR,
= R, N R, is reflexive.
(ii) R, "R, is symmetric :
Let a, b € X such that (a, b) e R, "R,
(a, b) e R, and (a, b) eR,
= (b, a) e R, and (b, a) € R,, since R, and R, being equivalence relations
are also symmetric.
(b, a) e R,NR,
(a, b) e R, "R, implies that (b, a) e R, " R,.
R, N R,is a symmetric relation.
(iii) R, " R, is transitive :
Let a, b, ¢ € X such that (a, b) e R, "R,and (b, ¢c) e R, nR,.
(a, b) e R,NR, = (a, b) e R and (a, b) e R, ... (i)
(b,c) e R,UR, = (b, c) e R and (b, ¢) € R, ... (i)
(i) and (ii) = (a, b) and (b, ¢) € R,
= (a, c) € R, since R, being an equivalence relation is also trasnsitive.
Similarly, (a, c) € R,.
(@, ¢) e R, "R,
So, R, n R, in transitive.
Thus R, N R, is reflexive, symmetric and also transitive. Thus R, " R, is an equivalence
relation.
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Example 5 : If R is an equivalence relation on a set A, then so is R!
Sol. Leta, b,c € A. Then
(i) (a, a) €R, since R being equivalence relation is also a symmetric relation

= (a, a) e R! = R is reflexive
(ii) Let (a, b) eR! = (b,a) eR
= (a, b) € R, since R is symmetric
= (b, a) e R!
(a, b) e R! = (b, a) e R

So, Rlis also symmetric
(iii) Let (a, b) and (b, c) € R™!
: b, a), (c, b) e R.

(
= (c, b), (b, a) e R.
= (c, a) € R, since R is transitive.
= (a, c) e R?

R'is also transitive.
L R is an equivalence relation.

1.3.3 Composition of Relations
Def. : Let A, B and C be sets and let R be a relation from A to B and let S be a relation
from B to C. That is, R is a subset of A x B and S is a subset of B x C. Then, R and S
give rise to a relation from A to C denotes by RoS and defined by

a(RoS) c if for some b € B we have aRb and bSc
That is RoS = {(a, c) : there exists b € B for which (a, b) € R and (b, c) € S}
The relation RoS is called the composition of R and S ; it is sometimes denoted
simply by RS, RoR is denoted by R?, R®*= RoRoR.
For Example : Let R and S defined on A be

R={(1, 1), (3, 1), (3, 4), (4, 2), (4, 3)}

S=1{(1,3), (2, 1), (3, 1), (3, 2), (4, 4)}
Now, RoS = }(1, 3), (3, 3), (3, 4), (4, 1), (4, 2)}

R3={(1, 1), (3, 1), (3, 4), (4, 1), (4, 2)}.
1.3.4 Closures of a Relation
Let R be a relation in a set A. R may not satisfy particular property like reflexivity,
symmetry or transitivity. The new relation, obtained after adding least number of
new pairs so that R satisfies particular property, is called closure of R. The types of
closures are discussed below :
Reflexive Closure : Let R be a relation on A. A reflexive closure of R is the smallest
reflexive relation that contains R.
Symmetric Closure : Let R be a relation on A which is not symmetric.

there exists (a, b) e R but (b, a) ¢ R
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Now (b, a) e R™

to make R symmetric, we add all pairs of R™.

R U R'is symmetric closure of R.
If R is a relation on A which is not symmetric. Then R U R is symmetric closure of
R.
Transitive Closure : Let A be a set and R be a relation on A. The transitive closure
of R, denoted by R*, is the smallest relation which contains R as a subset and which
is transitive.
Another Definition : Let A be a set and R be a relation on A. The relation
R*=RUR?UR3......... in A is called the transitive closure of R in A.
Example 6 : Let R be a relation on a set A = {1, 2, 3} defined by R = {(1, 1), (1, 2),
(2, 3)}. Find the reflexive closure of R and symmetric closure of R.
Sol. A={1,2, 3}

R={(1, 1), (1, 2), (2, 3)}

R ={(1, 1), (2, 1), (3, 2)}

RUR'={(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}

Reflexive closure of R is {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}

Symmetric closure of Ris RUR'={(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}.
Example 7 : Let R be a relation on set A = {1, 2, 3, 4} defined by

R ={(1, 2), (2, 3), (3, 4), (2, 1)}. Find transitive closure of R.
Sol. A={1,2,3,4}

R={(1,2),(2,3), (3, 4), (2, 1)}

0100
1 010 . .
M= where m is matrix of R
0 0 01
0 0 0O
, where M is matrix of R.
01 0 0|]|O 1 0O 1 010
5 1 01 O0(|1 01O 01 01
M = =
0O 0O 0 1{/|0 0 0 1 0O 00O
0O 0O 0 0|]|0O O O O 0O 00O
1 01 0|01 0O 0100
3 s 01 0 1||]1 01 O 1 010
M’ = M*M = =
0O 0 0 O0||]0O O O 1 0 0 01
0O 0 0 0|]|]0O O O O 0O 0 0 O
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01 0 1]Jo 1 00] 0100
. |1 01 0f/1 010 (0101
M* = -
0 00 0[]/OOOT1| |0O0O0TO
0 00 0/]/O OOO|] |[0O0OO
1111
1111
M*=M+M* + M’ +M* =
0 001
0000

R*={(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)}

which is transitive closure of R.
1.3.5 E  uivalence Class
Consider, an equivalence relation R on a set A. The equivalence class of an element
a € A, is the set of elements of A to which element a is related. It is denoted by [a].
For Example : Let A = {4, 5, 6, 7} and R = {4, 4), (5, 5), (6, 6), (7, 7), (4, 6), (6, 4)} be
an equivalence relation on A.
Now, equivalence classes are as follows :

[4] = [6] = {4, 6}

[5] = {5}

(71 = {7}

Results : (i) Suppose that R is an equivalence relation on a set X,

Then (I) a € [a] V a € X.

(I1) ae[bliff[a]=[b]Va,beX

(IlT) [a] =[b]or[a] n[b] =¢ V a, b € X, i.e. any two equivalence classes are
either disjoint or identical. Proof : Try Yourself.

(ii) The distinct equivalence classes of an equivalence relation on a set

form a partition of that set.

1.3.6 Representing Relations
In order to represent a relation, there are numerous ways such as matrix
representation, graphical representation, arrow diagram, diagraph or directed graph
and Hasse diagram. All these may be clearly understood from the following examples:
Example 8 : If A = {1, 2, 3, 4} and B = {x, y, z}. Let R be the following relation from A to
B:R=(1,y), (1, 2), (3,y), (4, %), (4, 2).

(a) Determine the matrix of the relation
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(b) Draw the arrow diagram of R
Sol. (a) From the fig. 1 Observe that rows of the matrix are labeled by the

elements of A and the columns by the elements of B. Also observe that entry in the
matrix corresponding to a € A and b € B is 1 if a is related to b and O otherwise

X y Z

1 0 1 1\“_

2 0 0 0‘==E

3 0 1 Og

4 1 0 1”,-"=
Fig. 1 ’

(b) From fig. 2, Observe that there is an arrow from a € A to b € B iff a is related
to bi.e. iff (a, b) e R.

Fig. 2
If A={1, 2, 3, 4}, consider the following relation in A
R={(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)}
(a) Draw its directed graph.
(b) Is R (i) reflexive,
(c) R?= RoR

Before giving the solution, we define the directed graph or cligraph as :- Draw a

small circle for each elemet of A. These circles are called vertices. Draw an arrow
called a edge, from vertex a, to vertex aj iff ai Raj.

The resulting pictorial
representation of R is called a directed graph or digraph.

Example 9 :

(ii) symmetric (iii) transitive or (iv) antisymmetric
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Sol.

(b) (i) Ris not reflexive3 e Abut 3 R 3i.e. (3, 3) ¢ R.

(ii) R is not symmetric because 4 R2 but 2 R 4
i.e. (4,2) e Rbut (2, 4) ¢ R.
(iii) R is not transitive because 4 R2 and 2 R3 but4 R 3i.e. (4, 2) e Rand
(2,3) e Rbut (4, 3) ¢ R.
(iv) R is not anti-symmetric because 2 R 3 and 3 R 2 but 2 # 3.
(c) For each pair (a, b) € R, find all (b, ¢) € R since (a, ¢) € R?
R?={(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3), (4, 4)}.
Example 10 : Let A = {1, 2, 3} and B = {a, b}. Represent A x B graphically.
Whatis |[AxB| ?
Sol. A xB-={(1,a), (1, b), (2, a), (2, b), (3, a), (3, b)}
Graphically A x B is shown below :
(]A x B| represents the order of A x B i.e. No. of elements in A x B).

N

2 + %
1 : *
a b >

|AxB| =|A|] . |B| =3.2=6.
Now, we define Hasse diagram as :
Def. : The Hasse diagram of a partially ordered relation. R defined on a set X is a
directed graph whose vertices are the elements of X and there is an undirected
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edge from a to b whenever (a, b) € R (Instead of drawing an arrow from a to b, we some
times place b higher than a and draw a line between them). An arrow from a vertex to
itself is drawn whenever (a, a) € R.

For Example : Let B = {2, 3, 4, 6, 12, 36, 48} and S be the relation/"divide" on B.
Then, Hasse diagram of S is

369 48
12
4i' 6
& 3

1.3.7 Introduction to Functions

Firstly, we define a function as :

Def. Function : Let X and Y be two non-empty sets. A subset f of X x Y is called a
function from X to Y if for each x € X, there exists a unique y € Y such that
(x,y) € for f(x) =y. It may also be defined as a rule f which associates each element

of X with a unique element of Y. It is denoted by f: X > Y or x_—f ,v. Here, the set

X is called the domain of f and is written as D,= X. The set Y is called co-domain of f.
If an element y € Y is associated with an element x of X under the rule {, then y is
called the image of x under the rule f, denoted by f(x). The set consisting of images
of all the elements of X under f is called Image set or Range of f and is written as R,.
Mathematically, R, = {y : y = f (x) where x € X} = {(X) clearly, f (X) Y.
Remarks : (i) Functions are also called mappings or transformations.
(ii) To every x € X, da unique y € Y such that y = f (x). The unique element
y € Y is also called the value of f at x and is denoted by f (x).
(iii) Different elements of X may be associated with the same element of Y.
(iv)  There may be elements of Y which are not associated with any element
of X.
For Example : (i) The rule shown in the figure 4.7 is not a function as each element
of X is not asociated. Here 5 € X has no image in Y.
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<

vy vy
N

X
\
)

\ 4

bbb =
o O N

Fig. 4.7
(ii) The rule shown in the figure 4.8 is not a function as I € X is associated with more

than one element namely a and b of Y.

X Y
1Na
2 > b
3 \ > { a
4M

5 > 4

Fig. 4.8
(iii) The rule shown in the figure 4.9 is a function as each element of X is associated

with a unique element of Y.

X Y
.
S W -
2

/N1

\
[

Fig. 4.9
1.3.8 One-One and Onto Functions
Def. One-One function or Injective function : A function f from X to Y is said to be
one-one (abbreviated 1-1) iff
x,# X, = f(x)) # f (x,) VX, X, € X, or equivalently
f(x)=1x,)=>x=x,Vx,x,eX.
In other words, if different elements of X under the rule f have different images in Y,
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then f is called one-one function. A function which is not 1-1 is called many-one

function.
For Example :

X Y
1 > 4
2 \ > / 8

\ 4 [
3 } > 12
4 . > 16
5 = / » \ 20

Fig. 4.10

Def. Onto function or Surjective Function :

Def. A function from f from X to Y is called onto iff every element of Y is an image of
at least one element of X. Otherwise f is called an into mapping.

Note. In the case of onto function, R,= Y, while in the case of into function R;is a

proper subset of Y.
For Example : (i) The function f depicted in the below diagram is one-one and onto

function.
X Y
1 > 4
2 \ » / 8
3 ) : > '(\- 12
4 b 16

Fig. 4.11
(ii) Let X = {1, 2, 3, 4, 5, 6}, Y = {2} (It is onto but not one-one)

X | Y

A 4
N

DN BDWN

Fig. 4.12



B.A. PART-III 49 MATHEMATICS : PAPER-III (OPT.])

Def. Bijective function : A function which is one-one and onto is called bijective
function. It is also called one-one correspondence.
For Example : The function shown in fig. 4.11 is a bijective function.
1.3.9 Types of Functions
There are various types of functions as discussed below :
I. Real valued function on real variables
Let X, Y be two non-empty subsets of real numbers. Then, every function f from X
to Y is called a real valued function on real variables.
II. Equal functions
Two real valued functions f and g are said to be equal iff D, = D, and

f(x)=g((x) VxeD. Wewriteitas f=g.
III. Constant Function
A function f : X > Y is called a constant function if f (x) = k for every x € X and Here
k € Y is fixed.
Function shown in figure 4.12 is a constant function.
IV. Identity Mapping

Let [ : X - X be defined by, [ (x) =xV x € X.

Then [ is called the identity mapping on X.
V. Inverse Mapping
Let f : X - Y be a one-one onto mapping. Then the mapping f!: Y - X which
associates to each element y € Y, the unique element x € X such that f (x) = y is
called the inverse map of f.
1.3.10 Composition of Functions
Def. : Let f be a function with domain X and range in Y and let g be a function with
domain Y and range in Z. The function with domain X and range in Z which maps an
element x € X, into g (f(x)), is called the composite of the functions f and g and is

written as g of.
For Example : Let X = {1, 3, 5}, Y = {3, 9, 15, 21}, Z = {2, 8, 14, 20}

P s L Z

Y

14
20

Yy v
/\\ !
!/

'\

Y

s e B
- - -
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Let f be a function from X to Y and g be a function from Y to Z such that

f={(1, 3),(3,9), (5 15}, g={(3, 2), (9, 8), (15, 14), (21, 20)}

then, gof = {(1, 2), (3, 8), (5, 14)}.
Note : (i) gof is defined only when R,c D..

(ii) It is possible that one of fog and gof may be defined while the other may not
be defined.

(iii) gof and fog both may be defined but may not be equal.

(iv) Let f, g, h be three functions and a be a real number, then

(a) (fog) oh = fo (goh) (Associative Law)
(b) fo (g+h) = fog + foh (Distributive Law)
(c) (o f) og = a. (fog) (Scalar multiplication)

Art1:Iff: A—> Band g: B —» C are both one-one and onto maps i.e. bijective maps,
then gof is also bijective map.

Proof : Since f: A—> B and g: B —» C are maps, therefore gof is also a map from A to C.
Let x, X, € A such that

One-One : (gof) (x), = (gof) x,

= glf(x)) = g (f (x,)

= f (x,) = f(x,), since g is one-one
= X, = x, since f is one-one

. gof is a one-one map
Onto : Since f, g are onto
Let ¢ € C be any element, then 3 b € B such that

g =c (- gis onto)

Again for this b € B, 3 some a € A such that
fa)=b (.. fis onto)

gof (a) = g (f(a)) = g(b) = c

Thus for ¢ € C, 3a € A such that gof (a) = ¢

Hence gof : A —» C is onto.
Art2:Iff: A—> Bandg: B — C are two maps such that gof : A —» Cis both one-one and
onto map, then f is one-one and g is onto.
Proof : Sincef: A - B, g: B » C are maps

gof : A > Cis a map. Also gof is given to be one-one map.
f is one-one : If possible, suppose that f is not one-one and g is one-one.

3x,, X, € A such that x #x,but f (x)) = f(x,).
Butf (x,) = (x) = g (f (x)) = g (f (x,)) [~ g is supposed to be one-one]
= gof (x,) = gof (x,)
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x,, X, € A such that x # x,, but (gof) (x)) = (gof) (x,)
gof is not one-one, which is against the given hypothesis that gof is one-one.
Thus our supposition is wrong and f is one-one but g is not one-one.
We, now give an example to illustrate that if gof is one-one, then g may not be
one-one.
LetA={1,2},B={4,5,6};,C={7,8,9, 10}
Let f={(1, 4), (2, 6)} and g = {(4, 7), (5, 8), (6, 8)}
then f and g are functions from A to B and from B to C respectively.
Have R.={5, 6}cD_={4,5, 6}
: ng Dg
= gof is defined and D_ = D, = A = {1, 2}
gof (1) = g (f(1)) = g(4) = 7 and gof (2) = g (f(2)) =g (6) = 8
gof ={(1, 7), (1, 8)}
Here, gof is one-one map since different elements of A have different image
But g is not one-one since g (5) = g (6) = 8, but 5 # 6.
Since f: A > Band g: B — C are maps, so gof is a map from A to C. We are given
that gof : A > C is onto. We now prove that g is onto
Letz € C.
g is onto : Since gof : A > C is onto, so 3x € A such that gof (x) =z
= g(f(x) ==z = g (y) = z where y = f (x)
Since x € A and f is map from A to B
Therefore f (x) e B=>y B
for given z € C, we have determined y € B such that g (y) = z
g: B — Cis onto
Now, we show by an example that if gof is onto, then f may not be onto
Let A={1,2},,B={4,5,6} C-={7}
Let f={(1,4),(2,6)and g=1{4,7),(5,7), (6, 7)}
Then f is a function from A to B and g is a function from B to C
gof is a function from A to C such that gof = {(1, 7), (2, 7)}
Here, g is onto. But f is not onto since 5 belonging to B has no pre-image in A
under the map f but g : B —» C is onto.
1.3.11 Invertible Function
Def. : A function f defined from X to Y is said to be invertible if three exists a
function g from Y to X such that gof = I, and fog = I, where I is an identity mapping
on X and I, is an identity mapping on Y.
Note : f and g are called inverse of each other.
Art 3:Letf: X > Y. Thenfol =f=1,o0f.
Proof : Let x be any element of X and letf (x) =y, y €Y
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Art 4 :
Proof :

Art 5 :
Proof.

Sincef: X >YandI[,:Y—>Y

Lof: X—>Y
Now (I of) (x) =L, (f(x)) =L, (y) =y =f(x) Vx e X
[of =f
Again[: X > Xandf:X —»Y
fol, : X—>Y
Now (fo I,) (x) = f (I, (X)) = f(x) Vx € X
fol, =1

If f: X > Y is invertible, then its inverse is unique.
Letg:Y > Xand h:Y — X be two inverse functions of f : X 5> Y
fog = I, gof =1, and foh = I, hof = [
Now g(y) = g (I,(y) = g {(foh) (y)} = g {f(h (y))}
= (gof) (h(y)) = L (h(y))
gy)=h(y)Vh(y)eX=g(y)=h(y)VyeY
g=h
o inverse of function f is unique.
Note. (1) Inverse of f, if it exists is denoted by .
(2) f'of = I, and f of ' = I, where f : X — Y is an invertible function.
A function f : X —» Y is invertible iff f is one-one and onto.
(i) Assume that f: X —» Y is invertible
J a function g : Y — X such that fog = [, and gof =I
We will prove that f is one-one and onto.
To prove that f is one-one
Let x,, x, € X and f(x)) = f(x))

= g (f(x,) = g (f(x,)) = (gof) (x,) = (gof) (x,)
= I, (x)=L(x) = X, =X,
flx) = f(x) = X, =x,Vx,x,eX

f is one-one.
To prove f is onto
To each y € Y, there exists x € X such that g (y) = x.

= f(g(y)) = f(x) = (fog) (v) = f(x)
= L, (y) = f(x) = y = 1f(x)
fis onto.

(ii) Assume that f : X —> Y is one-one and onto. We have to show that f is

invertible.

Since f is one-one and onto
to each y € Y, there exists one and only one x € X such that f (x) = y.
we can define a function g: Y > Xsuch thatg (y) =xiff f(x) =y
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Now (gof) (x) = g (f (x)) = gly) =%, Vx eX

gof =1
Again (fog) (y) = f(g (v)) =f(x) =y, VyeY
fog = I

f is invertible.
Art 6 : If a function f : X — Y be one-one and onto then, f!is also one-one and onto.
Proof: -- f: X —» Y is one-one and onto
f1:Y » Xexists and f'of = I, fof ' = I,
To prove f'is one-one
Lety €Y, y,eY.
Now f'(y)=1"(y,
= £ () = £ (v,)

= (fof™) (y,) = (fof ™) (v,)
= L) =1 = V. =Y,
1 (y,) = ' (y,) = V=Y, VY, ¥,€Y

f'is one-one.
To prove f! is onto
To each x € X, there exists y € Y such that y = f(x)

= 1 (y) = ' (f(x)) = £ (y) = (' of) (x)
= 1(y) = (%) = fly)=x
: flis onto

Cor. Since, flis invertible and its inverse is f.
(fy1t=f.

Art 7:Lletf: X > Yand g:Y — Z and let f, g be one-one onto. Then gof : X —» Z is also
one-one onto and (gof)™ = f!og.
Proof : Do Yourself.
1.3.12 Floor and Ceiling Functions
For any real number x, the floor function of x means the greatest integer which is
less than or equal to x.
It is denoted by [x].
For Example : [2.58] = 2, [-4.4] = 5, [2] = 2
For any real number x, the ceiling function of x means the least integer which is
greater than or equal to x. It is denoted by [x].
For Example : [2.58] = 3, [-4.4] = -4, [2] = 2.
For any real number x, the integer function of x converts x into an integer by deleting
the fractional part of x. It is denoted by INT (x).
For Example : INT (2.44) = 2, INT (-4.44) = 4.

Note : (i) If x is an integer, then [x] = [X]. Otherwise [x] + 1 = [X]
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(ii) X]=n=>n<x<n+land[x]=n=n-1<x<n

(iii) INT (x) = [x] if x is positive and INT (x) = [x] if x is negative.
Some Important Examples
Example 11 : Let a function f : R - R be defined by f (x) = 2x + 3 V x € R. Prove that
is one-one and onto.
Sol. Letx, x,e Rsuch that f (x)) = f(x))

2%, +3 =2x,+3 =X =X,
. f is one-one map
Lety e R. Lety = f (x))
-3

Then 2x +3 =y = X =YT

Since yeR,so

Y=3 cRie.,x, eR
2

fkd=2x0+2=2y;3+3=y

Therefore for each y € R, there exists x, € R such that f(x) = y.
fis onto.

1
Example 12 : If f(x) 1 x’ then what is f [f {f(x)}] ?

Sol. Here f(x):L
1-x
1 1 1-x 1-x
ff = = = =
€ 1-f(x) ;_ 1 1-x-1 —x
1-x
1 1
1-f(x 1 1-x-1 -x
R -=
“f(x) 1 1 4
1-x

= f [f {f(x)}] = x.

Example 13 : Let f and g be two functions from IR — R defined by f (x) = x2+ 3x + 2 and
g (x) = 4x — 1. Find fog and gof. Also calculate (gof) (-1) and fog (-1). Is composition
commutative or not ?
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Sol. gofis a map from A to C defined by gof (x) = g (f (X)) V x € A.
Here, f: R > Ris defined by f (x) = x2+ 3x + 2, Vx € R,
and g:R > Risdefinedbyg(x)=4x-1,VxeR
fog : R > R is defined by
fog(x)=flgx)=f@x+1)=4x-1)2+3 4x-1)+2
=16x?-8x+1+12x-3+2
i.e., (fog)x=16x+ 4x. ... (1)
gof : R > R is defined by
gof=g (f(x)) =gxX*+3x+2)=4 (x*+3x+2)-1
=4x%+ 12x + 8 -1
gof (x) = 4x2+ 12x + 7 ... (2)
By (1), (fog) (-1) =16 (-1)2+4 (-1)=16-4 =12
By (2), (gof) (-1) =4 (-1)*+] 12 (-1) + 7 = -1

fog (-1) # gof (-1).
Hence composition of maps is not commutative.

-1
Example 14 : Is f(x)= z+1 invertible in its domain ? If so, find f!. Further verify that
(fof?) (%) = x.

x-1

Sol. Here f(x)=
x+1

D, = set of all reals except - 1

R, = set of all reals except 1
Let x, x,e D,and f (x) = f (x,)

x -1 x,-1

—_= =S XX, —X,+X, -1=xX,+%X,-%, -1
= X, +1 x,+1

= 2x, = 2x, = X, = X,

flx)=f(x) = X =X
f(x)is1-1in D,

VyeRfEIx=i+yeDf(wherey¢1)
-y
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1+y_1 l+y-1+y

1+ 1- 1- 2
s.t.f(x):f[ szl y -~ _{_ Wy
1-y) 1+y , l+y-l-y 2
-y l-y

the mapping fis onto

fis both 1-1 and onto = ! exists

. x-1
Now to find f!, Let y =f(x) =
x+1
xy+ty=x-1 = X-xy=y+1
X(1l-y)=1+ :x——1+y
= y y 1-y-
Py =Y =
l1-y 1-x
and Df—l = Set of all reals except 1
1+x 1+x-1+x
. _ f'x)-1 1-x 1— 2x
1 _ 1 _ _ X _ X _aa
Verification : (fof ™) (x) = (f " (x)) flx)+1 1+x 41 l+x-1-x 2 x
1-x 1-x
(fof?) (%) = x.
Example 15 : Prove that function f: C - R, defined by f (z) = |z| is neither one-one nor
onto.
Sol. Here, f: C > R defined by f (z) = | z]|

Letz =2+31i,2,=2-31 = z, #2,
f(21)=|Z1|=\/4+9=\/E [z=x+1y,|z|=yx* +y? ]
f(z,)= 2z, =4 +9 =13

Here f(z)=1(z,). Butz #z,.

so, f is not one-one.

Onto : again let - 3 € R.

But there does not exist any complex number such that f (z) = -3.

So, f is not onto.
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Example 16 : Let X=Y=Z=Randletf: X >Yandg:Y — Z are such that
f(x) =2x+1andg(y) =y/3. Verify that (gof) = flog™.

Sol. Heref:X - Yis defined by f(x) =2x+ 1and g: Y — Z is defined by 8(Y) Z%

LS. : gof(x) = g(f(x) = g(@x + 1) = 221

Now we find (gof)™, Let gof (x) =y

2x+1:>X_3y—1

3 2

then, Y=

1 3x-1

Sy -1 or (gof) 'x = 5

= (gof) 'y =

RHS.:f(x)=2x+1

= y:2x+1:>x:T1

-1 x-1
fl(y)=L " or f'(x)=2">

= (v) 5 (%) 5
Again, g(Y)Z%:”(:%jy:?’x

= g'(x) =3xorg'(y =3y

Now flog™(x)=f (g (x)) = (3x) = 1

o) (gof)™=f! og.
Example 17: Let f and g be functions from R to R defined by f (x) = [x] and g(x) = |x].
Determine whether fog = gof.

Sol. Given f (x) = [x] and g(x) = | x|
fog (x) =f[g (x)] = f(Ix]) =[lx]]
gof (x) = g [f(x)] = g ([x]) = | [x]|

Now fog # gof.
As fog (-3.2) = flg (-3.2)] =f (3.2) = 3
gof (-3.2) = g [f (-3.2)] = g (-4) = 4.
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1.3.13 Self Check Exercise
1. In N x N, show that the relation defined by (a, b) R (c, d) if ad = bc is an
equivalence relation.
2. Show that R, U R, may not be an equivalence relation on a set Xif R, R,
are equivalence relations on X.
3. How many relations are possible from a set A of m elements of another
set B of n elements ? Why ?

4. Let R and S be the relations on X = {a, b, c} defined by
R =1{a, b), (a, ¢), (b, a)}, S = {(a, ¢), (b, a), (b, b), (c, a)}
(i) Find M_and Mg (ii) Find RoS (iii) Find SoR

S. Let A = {1, 2, 3, 4} and relation on it R = {(a, b) : | a - b|] = 2}. Find
transitive closure of R.

0. Let X ={1, 2, 3, 4} and R = {(%, y) : x > y}. Draw the diagraph and matrix of R.

7. R is a relation on set of positive integers s.t. R = {(a, b) : a — b is an odd
integer}. Is R an equivalence relation ?

8. Prove that a function f : IR — R, defined by f (x) = x3is one-one onto.

0. Is function f : IR - R defined by f(x) =§ is bijective in its domain.

10. If f(x) =x2-1, g (x) = 3x + 1, then describe the following functions :
(i) gof (ii) fog (iii) gog (iv) fof

X+ 2
11. Ify=1{x) = -1 then show that x = {(y).

12. Let f: IR - R and g : IR - IR be real valued functions defined by

f(x) =2x°~ 1, x e R and g(x)z[%(erl)T ,xcIR. Show that f and g are

bijective and each is inverse of other.

13. Give an example of a map which is
(i) one-one but not onto (ii) onto but not one-one.
Suggested Readings :
1. Dr. Babu Ram, Discrete Mathematics
2. C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill,
International Edition, Computer Science Series, 1986.
3. Discrete Mathematics, S. Series.
4. Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw Hill

Fifth Ed. 2003.
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Structure :

I. Objectives

II. Introduction

III. Types of Graphs

IV. Graphs Isomorphism and Sub-Graphs

I. Objectives

The prime objective of this unit is to define and discuss various components of
graph theory along with suitable examples.

II. Introduction

Graph theory is employed in many areas of computer science such as switching
theory, logical design, artificial intelligence, formal languages, computer graphics
etc. On account of diversity of its application, it is useful to develop and study the
subject in abstract form and then import its results. Firstly, we may define a graph
as

Def. Graph : A graph (or undirected graph) is a diagram consisting of a collection of
vertices together with edges joining certain pair of these vertices. Mathematically,

we can write a graph G as G = [V(G), E(G)] where V(G) and E(G) are sets defined as
V(G) is the vertex set of the graph G, and E(G) < V(G) x V(G), a relation on V(G),
called edge set of G. Each element e of E(G) is assigned an unordered pair of vertices
(a, b), where a and b are end vertices of e.

A graph G (or undirected graph) consists of a finite set V of objects called vertices, a
finite set E of objects called edges ad a functio Y, that assigns to each edge a subset
{v, w} where v and w are vertices (and may be the same). Mathematically, we can
write, G=(V,E,Y) or simply G=(V,E). If e is a edge and Y(e)={v,w}, then e is an edge
between v and w and that e is determined by v and w. Moreover, v and w are called
the end points of 'e'.

e.g. ;- Let V={1,2,3,4} and E={e , e,, €,, €,, €,)

27 73?2

59
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Let Y be defined by Y(e,) = Y(e,) = {1,2}
Y(e,) = {4,3}, Y(e,) = {1,3}, Y(e,) = {2,4}
Then, (G,E,Y) is a graph. €

In the pictorial representation of a graph, the connections are the most important
information and generally, a no. of different pictures may represent the same graph.

e.g.

4 3

Note : It does not matter whether the joining of the two vertices in a graph is a
straight line or a curve, longer or shorter.

Def. Directed Graph : It may be defined as a graph in which each element 'e' of

E(G) is assigned an ordered pair of vertices (a, b) along with arrow starting from 'a’

to 'b’, where 'a' is called initial vertex and 'b' is called terminal vertex of the edge e.

The graphs directed and undirected are shown in the following figures.

a X g ¥ a q o X 2
es es
e, €4
ey e, 1% €3 e, ) %
b o . b
ey e, - c O e; e, c
(DIRECTED GRAPH) (UNDIRECTED GRAPH)
Fig. 5.1

Def. Adjacent Vertices : Two vertices u and v of a graph G = (V, E) are said to be
adjacent if there is an edge e = (u, v) convecting u and v.

For Example : In the above diagram, a and b are adjacent vertices since there is an
edge e, = (a, b) joining a and b while the vertices a and d are not adjacent.

Def. Loop : An edge that is incident from and into itself is called a loop or self loop
or sting.

For Example : In the above diagram, e = (b, b) is a self loop since it is incident from
b onto itself.
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Def. Isolated Vertex : A vertex of a graph G = (V, E), which is not the end vertex of any
edge in G, is called an isolated vertex. In the above diagram, x is an isolated vertex.
Def. Parallel Edges : If two (or more) edges of a graph G have the some end vertices,
then these edges are called parallel edges. In the above diagram, e, = (b, d) and e, =
(b, d) are parallel edges.
Def. Adjacent Edges : Two non-parallel edges of a graph G are called adjacent if
they are incident on a common vertex.
For Example : The edges e = (a, b) and e, = (a, c) are adjacent as they have a
common end vertex 'a'.
Note : It may be noticed that the joining of two vertices in a graph G may be a
straight line or a curve, longer or shorter.
III. Types of Graphs
There are various types of Graphs, which are discussed below :

I. Simple Graph : It is a graph which has neither self loop nor parallel

edge, as shown below.

a
a d
€4 s
e, €3

€3

b c
) b ey c
Fig. 5.2

II. General Graph (or Multi Graph) : It is a graph which has either self
loop or parallel edge or both, as shown below

Parallel
edge

e Loop

€

Fig. 5.3
III. Complete Graph : It may be defined as a simple graph in which there



B.A. PART-III 62 MATHEMATICS : PAPER-III (OPT.])

exists an edge between every pair of vertices. It is also called universal

graph and a complete graph with n vertices is usually denoted by k_.
For Example :

Fig. 5.4
IV. Weighted Graph : Let G = (V, E) be any graph and w : E > R be a
function from edge set E to the set of real numbers R. Then, the graph
G = (V,E,w) in which each edge is assigned a number called the weight
of the edge, is known as weighted graph.
For Example :

d
ai
2.5 12
1.5 27 |31

b

1.8 -
32

Fig. 5.5

V. Finite and Infinite Graphs : A graph G = (V,E) is called a finite graph
if its vertex set V is a finite set otherwise if its vertex set V is an infinite
set, it is called an infinite graph.

For Example :

€s
d
a e, e,
€4
he
€ c
(Finite graph) (Infinite graph)

Fig. 5.6
Note :
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(1) The no. of vertices denoted by |V(G)| is called order of graph G.

(ii) A graph with one vertex and no edges is called trivial graph.

(iii) A graph with no vertices and no edges is called a null or empty graph.

VI. Regular Graph : In order to define a regular graph, we first discuss

about the degree of a graph G as :

Def. In-degree : In a directed graph G, the in-degree of a vertex 'a' is defined as the
number of edges which have 'a' as the terminal vertex. It is denoted by degG*(a) or
d*(a).
Def. Out-degree : In a directed graph G, the out-degre of a vertex 'a' is defined as
the number of edges which have 'a' as the initial vertex. It is denoted by degG-(a) or
d-(a).
Def. Degree : The degree of a vertex 'a' in a directed or undirected graph is defined
as the total number of edges incident with a. It is denoted by deg G(a) or d(a).
Therefore in a directed graph, deg G(a) = deg G*(a) + degG(a).
Remark : A loop contributes two to the degree of a vertexm, since that vertex
serves as both end points of the loop.
For Example : In the following directed or undirected graph, we have

& e
€ 6‘“ e, .

(Directed (Undirected
Fig. 5.7

In directed graph In undirected graph
deg G(x) = deg G*(x) + deg G(x)

degG(a)=2+2=4 deg G(a) = 4
degG(b)=1+2=3 deg G(b) = 3

deg G (c)=2+3=5 deg G(c) = 5
degG(d)=3+1=4 deg G (d) = 4

Now, we can define a regular graph as :
A graph in which all the vertices are of same degree, is called a regular graph.
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Moreover, if all the vertices have same degree equal to k, then if is called a k-regular

a J e
a a q ]: % ]d
b b[ ]c' ¢

(1-Regular graph) (2-Regular graph) (3-Regular graph)

graph.
For Example :

Fig. 5.8
Note :
(i) A vertex in a directed graph with in-degree zero is called a source and
out-degree zero is called a sink.
(ii) The direction of a loop in a directed graph has no significance.
(iii) In a graph G, the vertex v is said to be of even or odd parity according

as deg. (v) is even or odd.

(iv) A vertex whose degree in a graph is one, is called pendent vertex.
(v) A vertex whose degree is zero, is d called an isolated vertex.
(vi) A complete graph K_with n vertices is n-1 regular graph.

For Example :

b c
Fig. 5.9
Here a and c are pendent vertices, while d is a isolated vertex.

IV. Graphs Isomorphism and Sub-Graphs
Let G = (V, E) and G' = (V', E') be two graphs. Then, G is isomorphic to G' written as
G = G'if there exists a bijection f, from v onto v' such that (v,, v) € E, iff (f(v), f(v)) €
E'. We can say, two graphs are isomorphic if there exists a one-one correspondence
between their vertices and edges such that incidence relationship is preserved.
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For Example :

Fig. 5.10

Here, G=G' since 3 a mapping u, —— v, ande,——e! fori=1, 2, 3, 4, 5.

Remarks :

(i) Two isomorphic graphs must have : (a) same number of vertices, (b)
same number of edges, and (c) an equal number of vertices with given
degrees.

(ii) The converse of remark (i) is not true i.e. the two graphs may be non-

isomorphic even though they have the same number of vertices and
edges and an equal number of vertices of given degrees.
For Example :

L)

G'
Y @)
ug ug U u, ® ® -8 g
() 0 o

0)
Fig. 5.11

Here G  G'since in G' there is only one pendent vertex v, adjacent to v, while in G

there are two pendent vertices u, and u, adjacent to u,.

Def. Sub-Graph : Let G and H be two graphs with vertex sets V(H), V(G) and edge
sets E(H) and E(G) respecitvely such that V(H) c V(G) and E(H) < E(G), then H is
known as subgraph of G (or G as supergraph of H).

If VH) cV (G), E(H) c E(G), then H is a proper subgraph of G and if V(H) = V(G) and
E(H) ¢ E(G), then H is called a spanning subgraph of G. In simple words, H is a
subgraph of G if all the vertices and all the edges of H are in G, and each edge of H
has the same end vertices in H as in G.



B.A. PART-III 66 MATHEMATICS : PAPER-III (OPT.])

For Example : In the following example, H is a subgraph of G.

H) (G)
\%
Ve !
e e,
v,
Fig. 5.12

Dif. G-v : G-v is a subgraph of G obtained by deleting the vertex v from vertex set
V(G) and deleting all the edges from edge set E(G) which are incident on v.
For Example : Let G be the graph find G-A, G-B, G-C

A B o
D E F
Fig. 5.13

Now, G-A, G-B and G-C may be represented as

v

(@ ® (©)

Fig. 5.14
Def. G-e : Let e be an edge in G. Then, G-e is the subgraph of G obtained by
deleting the edge e from the edge set of G.
For Example : Let G be a graph.
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Ae B

Fig. 5.15
Now, following subgrahs may be obtained from it :

A. B A B A B A B

Fig. 5.16
Note : Every graph is its own subgraph.
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I. Operations of Graphs

The following operations may be defined on graphs :

I. Union of two graphs : Let G, = (V(G)), E(G,)) and G, = (V(G,), E(G,)) be two
graphs. Then, their union denoted by G,u G, is a graph G, U G, = (V(G,UG,), E(G,VUG,))
such that V(G ,UG,) = V(G,)) v V(G,) and E(G,uG,) = E(G) U E(G,).

For example :

Gy

\f)

Fig. 5.17
II. Intersection of two graphs : Let G, = (V(G)), E(G,)) and G, = (V(G,), E(G,))
be two graphs. Then, their intersection denoted by G, n G,is a graph G, n G, =
(V(G,NG,), E(GNG,)) such that V(G NG, = V(G)) n V(G,) and E(G, n G, = E(G)) n
E(G,).
For Example :

2

@

A\
®
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III. Complement of a Graph : Let G be any graph. Then complement of G
denoted by G may be defined as the simple graph with the vertex set same as the
vertex set of G together with the edge set satisfying the property that there is an edge
between two vertices in G, when there is no edge between these vertices in G.
For Example :

Vs

(G) (G)

A&

Vs
Fig. 5.19
Note : If the degree of a vertex v in a simple graph G having n vertices is k. Then,
degree of vin G isn - k - 1.
II. Some Important Theorems

Theorem 1 : (First Theorem on Graph Theory or Handshaking Theorem) : The
sum of degrees of all the vertices in a graph G is equal to twice the number of edges
in G.

Proof : Let 'e' be the number of edges in G and 'n' be the number of vertices in G.
Let 'k' be any edge between two vertices v, and v,in G. Now, on counting the degree
of all vertices in G, k will be counted twice, once in degree of v, and again in degree
of v,. Also, if v and v, are identical, k will be again counted twice since it is a self
loop. Hence, every edge is counted twice and total degree is twice the number of
edges i.e.

z deg (v;)=2e
i=1

Theorem 2 : Prove that in a graph G, the number of vertices of odd degree in
even.
Proof : Let v, v, .c.cccoounns v_be n-vertices and e, e

gy eeeeenees e_be e-edges in G.

Then, by first theorem on graph theory

gdeg (vi)=2¢ . (1)

Now, divide the sum on L.H.S. of (1) in two parts such that one part contains the sum
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of degree of vertices with even degree and other part contains the sum of degree of
vertices with odd degree. Therefore, equation (1) may be written as

z deg (v;)+ Zdeg. (v,)=2e

even odd

Since the R.H.S. of (2) is an even number. Also Zdeg (v;) is also even. Therefore,

%deg (Vi) or sum of degree of vertices with odd degrees, is also even.

o

Hence, number of vertices having odd degree mustbe even.

Theorem 3 : Prove that maximum degree of any vertex in a simple graph having
n vertices is n-1.

Proof : Since, in a simple graph, there is no parallel edge and no self loop. Therefore,
a vertex can be connected to the remaining n-1 vertices by at most (n-1) edges.
Hence, max™ degree of any vertex in a simple graph having n vertices is n-1.

Sly, the reader may easily prove that the degree of any vertex in a complete graph
having n vertices is n-1.

Theorem 4 : Prove that the number of edges in a complete graph with n vertices

n(n-1)

1S 2

Proof : Since, degree of any vertex in a complete graph with n vertices is n-1. Now,

by first theorem on graph theory we have Y deg.(v,)=2e

1=1
= n(n-1) = 2e [-deg.(v;)=n—-1for<i<n]

e:n(n—l)

= 2

Theorem 5 : Show that max™no. of edges in a simple graph with n vertices is

n(n-1)

-5

Proof : Do Yourself.

III. Some Important Examples

Example 1 : Prove that there does not exist a graph with 5 vertices with degrees
equal to 1, 3, 4, 43 respectively.
Sol. : Here n = 5, Let e be the number of edges in graph. Now, by first theorem on
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graph theory

> d(v)=2e=1+3+4+2+3=2e
i=1

13
= €= DX which is not possible.

Hence, there does not exist a graph with 5 vertices of given degrees.

Example 2 : Is there a simple graph G with six vertices of degree 1, 1, 3, 4, 6, 7 ?
Sol. : Here n = 6 and we know that, max™ degree of any vertex in a simple graph
with n i.e. 6 vertices is n—-1 = 6-1 = 5. But G has a vertex of degree 7, which is not
possible in a simple graph.

Hence, there is no simple graph G having six vertices with given degrees.
Example 3 : Find k, if a k-regular graph with 8 vertices have 12 edges. Also, draw
k-regular graph.

Sol. : In a k-regular graph, degree of all the vertices is same and equal to k. Here
n=38ande-=12.

By first theorem on graph theory = Zd (v;)=2e

i=1

8
=>k=2(12)=8k=24=k=3

i=1

Now, the 3-regular graph is

(3-Regular graph)

Fig. 5.20
IV. Matrix Representation of Graphs :
A graph can be represented by a matrix in two ways :
(i) Adjacency matrix (ii) Incidence matrix
Adjacency Matrix (for undirected graph) :
Let G be an undirected graph with n vertices. Further suppose G has no multiple
edges. Then G is represented by n x n matrix defined as M = [a,]
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~ {1 if a; and a; are adjacent

a..
Y0 otherwise

i.e. an entry is 1 if there is an edge between a and a,.

For Example : For the graph

-

The Adjacency matrix is given by

d

a b c

11 01
a l 101

1 011
b 1 0 1 landso, M=

01 01
c 01 01

1 1 10
d 1 110

Note : Adjacency matrix of undirected graph is always symmetric.

Adjacency matrix of Directed Graph : Let G be diagraph with n vertices

having no multiple edges. Then G can be represented by n x n adjacency matrix m
defined by

{1 if there is edge from a, to a;
a.. =
ij

0 otherwise
For Example : The adjacency matrix of following graph is

4 b

N
Ll

N
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a b c d
0100
a 01 0O
0 010
b O O 1 Oandso, M=
0011
c 0011
11 00
d 1 1 00

Adjacency matrix of multi-graph (undirected) : Let G be undirected graph
of n vertices that may contain parallel edges. Then adjacency matrix M is n X n
matrix defined by M = [aij]nxn

n, nis number of edges between a; and a;

a. =
where 9y {O otherwise

For Example : The adjacency matrix of Multi-graph.

is a b c d e _ _
1 2 0 01
al 2 0 01
2 01 0O
b 2 01 00
andsoM=|{0 1 0 1 3
c 01 01 3
0 01 01
d 001 01
1 0310
e 1 0310 - -

Note : In similar way, we can find adjacency matrix of directed multi-graph.

Incidence matrix : Let G be a graph have m vertices and n edges. Then incidence

matrix of graph is m X n matrix written as A(G) = [aij]nm defined by
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aij

1 if fth edge e, is incident on ith vertex v;
0 otherwise

For Example : For the graph

al
xl x2
b e
Number of vertices = 5
Number of edges = 7
So incidence matrix is 5 x 7 matrix.
X, X, X, X, X X X,
a 1 1 0 0 0
b 1 0 1 1 0 0 0
c 0 0 0 1 1 1 0
d 0 0 0 0 1 1
e 0 1 1 1 0 1
1 1.0 0 00O
1 01 1 0O00O0
so AG)=|0 0 01 1 1 O
0O 00O O0OOT11
0110101
V. Self Check Exercise
1. How many nodes or vertices are necessary to construct a 2-regular

graph with exactly 6 edges.
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2. Find n, if a complete graph with n vertices has 15 edges.

w

Does there exist a 3-regular graph with nine vertices ?
4. Is it possible to construct a graph with 12 edges such that two of its
vertices have degree 3 and remaining vertices have degree 4.

Suggested Readings :

1.
2.

Dr. Babu Ram, Discrete Mathematics

C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill,
International Edition, Computer Science Series, 1986.

Discrete Mathematics, S. Series.

Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw Hill
Fifth Ed. 2003.
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Structure :
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V. Hamiltonian Paths and Circuits
VI. Some Important Examples

VII. Travelling Salesman Problem
VIII. Introduction to Trees
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X. Tree Searching

XI. Spanning Tree
XII. Suggested Readings

I Walk, Path and Circuit
A path II in a grah G consists of a pair of (VI EII) of sequences:- a vertex sequence

VIT :V, V... ,V

Each success pair V,, V. + 1 of uertices is adjacet i G, and edge ei has V,, V, + 1

and an edge sequence EIl e, e , €_,, for which (i)

k-1?
as end point for i=1,2--- k-1.

A Circuit is a path that begins and ends at the same vertex. It is also as cycle of
circular path al polygon

A path is called simple if no vertex appears more than once in the vertex sequence,
except possibly if V,, U _(In this case, the Path is called a simple circuit).

K-cycle:- A cycle with k-edges is called a k-cycle and it iLsI denoted by C,_

[
Ui ei U2
V. ¢
‘Self Loop 2-cycle 3-cycle
1-cycle K =eve,v, Triangle
W=v e v, Pair of parallel Edge v e v,e,u.e U

76
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Note:- n-cycle is a polygon of n sides.
Def. Length of Path : The number of edges appearing in the sequence of the path
is called the length of the path.
Remark. (i) An edge which is not a self loop is a path of length 1.
(ii) A self loop can be included in a walk but not in a path.

(iii) The terminus vertices of a path are of degree 1 and the internal vertices
of the walk are of degree 2.

Vg : A B, C, D, D,

EH : p.r,t,u
A,p,IB,r,e,t,D,u,D Path but not simple
, 1A, B, A
I} :pyq

Er, : D,EB,C | Simple Path
EH3 . t,r,s

Defn:- A graph is called Connected if there is a path from any vertex to any other
vertex in the graph. Otherwise, the graph is disconnected. If the graph is disconected,
the various connected pieces are called the components if the graph.

e.g:- The graph in above Fig. (A) is conected while the graph in Fig. B is disconected.
Moreover, it has two connected components.

=
(@)
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Defn:-Discrete Graph:- A graph denoted by, Un (n>1), with n vertices and no edge is
called a Discrete Graph on n vertices.

e.g. . ..
U, U,

Defn Linear Graph:- A graph, deneted by L n(n>1), with vertices (u, u, + 1) for I<I<n,
is called linear Graph on n verticesl

e.g. .

L L

2 4

Bipartise Graph:- Let G by any graph. if vertex set V ca be partitioned into two
disjoint subsets A and B >— Biery edge in G joins a vertex in A and a vertex in B,
the the graph is said to be Bipartise graph.

d €

Complete Bipartise Graph:- A BG is said to be complete if every vertex A is joined
to every vertex is B.
Km, n m- No. of vertex in A
n- No. of vertex in B

II. Planar Graphs

A planar graph is a graph drawn in the plane in such a way that no two edges
intersect (cross) each other.

Def. Planar graph : A planar graph is a graph which is isomorphic to a plane

graph i.e., it can be redrawn as a plane graph.
A graph which is not a planar graph is called non-planar graph.

For Example : (i) The complete graph with four vertices K,is usually drawn with

crossing edge see fig (a). But it can also be drawn with non-crossing edges see fig.

(b)
Fig. (a) @

Fig. (b)
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Hence K,, is a planar graph.
(ii) A complete graph is five vertices is non-planar i.e., K, is non-planar.

Vi

Vi

V, V,
Fig (a) Fig (b)

Since the graph shown in fig. (a) cannot be drawn in plane without crossing edges
see fig. (b). Hence K, is non-planar graph.

Region : A plane graph partitions the plane into several regions. These regions
are called faces. Each region is depicted by the set of edges.

Cycle : The boundary of the region R of graph G is cycle if the boundary of R
contains no cut edges of G. i.e., contain no edge such that on removing any edge in
R it will not be a closed circuit.

Degree of face : If G be graph and g be its face, then the number of edges in the
boundary of g with cut edges counting twice is defined as the degree of face g.
Cut Edge : Cut edge in a graph is an edge whose removal results in a disconnected
graph.

For Example : Consider the following plane graph

Various regions are shown by R, R, R, R,, R
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Here deg (R)) = 3, deg (R,) = 3, deg (R,) = 5, deg (R,) = 4, deg (R,) = 3

Theorem 1 Euler's Formula

Let G = (V, E) be a connected planar graph and let R be the number of regions
defined by any planar depiction of G. Then R = |E| — |V]| + 2

Proof : We prove the result by induction let k be the number of regions determined
by G.

We first show that the result is true for k = 1. A tree determine the above regon, for

example

/

tree

No. of vertices = 4, No of edges = 3. Also from the formula, we have
1=|E|-|V]|+2=[E|=|V]-1
i.e., No. of edges = No. of vertices —1, which is always true for a tree.
The result is true for k = 1.
Let us assume that the result is true for all k > 1. Let G be a connected plane graph
determining (k + 1) regions. Remove an edge which is common to the boundary of
two regions. We obtain a graph G' having k-regions.

Let |V'|, |E'|, R' denote respectively the number of vertices number of edges and
regions of G', then
R'=|E'| - |V'] +2 . (1)
Also, we have
[V'[ =|V], |[E'] = [E] -1, R"=R-1
[E| [V +2=|E'[+1-|V'|+2=(]E"[ - [V'[+2)+1 =R+ 1 [ of (1)]
=R

results is true for k + 1

result follows by induction for all connected graphs.
III. Shortest Path Problem
Let G be a connected graph whose edges are assigned unique weights (taken as
distances). We want to determine shortest possible path between a pair of vertices.
Method for this was developed by Dijkstra and is known as Dijkstra's algorithm.
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Dijkstra's Algorithm :

This algorithm maintains a sets of vertices whose shortest path from source is already
known. If there is no path from source vertex do any other vertex then it is
represented by + c. All weights must be positive.

Following points are considered :

1. Initially there is no vertex in sets.

2. Include source vertex V_in S. Determine all the paths from V to al other
vertices without going through any other vertex.

3. Include that vertex in S which is nearest to V_ find shortest paths to all the
vertices through this vertex, give the values.

4. Repeat the process until (n—-1) vertices are not included in S.

Example : Find the shortest path between a and z.

b 3 e
n
2 2 S 1
a 1 z
c
7 \
4 2 3

d 4 v

Step I : Include the vertex a in S and determine all the direct paths from a to all
other vertices without going through any other vertices.
Distance to all other vertices
a a b c d e f z
0 2(a) 1(a) 4(a) o0 0 0
Step II : Include vertex in S, nearer to a and determine shortest path to all the
vertices through this vertex. The nearest vertex is c.
Distance to all other vertices
a, c, a b c d e f z
0 2(a), 1(a) 3(a,c) 6(a,c) 8(a,c)
Step III : Second nearest vertex is b
Distance to all other vertices
a,c, b a b c d e f z
0 2(a) 1(a) 3(a,c) S(a,b) 8(a,c)
Step IV : Next vertex is d.
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Distance to all other vertices
a,c,b,d a b c d e f z
0 2(a) 1(a) 3(a,c) S(a,b) 7(a,c)
Step V : Next vertex is e.
Distance to all other vertices
a, c, b,d,e a b c d e f z
0 2(a) 1(a) 3(a,c) S(a,b) 7(a,c) 6(a,b,e)
Step VI : Next vertex is z.
Distance to all other vertices
a, c, b,d,e,z a b c d e f z
0 2(a) 1(a) 3(a,c) S(a,b) 7(a,c) 6(a,b,e)
n — 1 vertices are included in S.

So minimum path between a and z is 6
Pathisa >b > e > z.

IV. Euler Paths and Circuits

Euler Path : A simple path in a graph G is called Euler Path if it traverses every
edge of graph exactly once.

Euler Circuit : Euler Circuit is a circuit in graph G which traverses every edge of

graph exactly once. Euler Circuit is simply a closed Euler path. It is also called
Euler line.

Eulerian Graph : A graph which contain either Euler Path or Euler Circuit is
called Eulerian Graph.
For Example :

D C
Fig. 1 - Fig. I
Fig. I has Euler Circuit ABCDA
Fig. II has Euler Path ABCDAC

Remark : Circuit starts and ends at same vertex whereas path starts and ends at
different vertices.
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Some Important Results :

Result 1 : A connected graph G is a Euler Graph if all the vertices of G are of even
degree.

Result 2 : If G is a connected graph and every vertex of G has even degree, then
prove that G has a Euler Circuit.

Result 3 : If a graph has Euler Path then it has either no vertex of odd degree or
two vertices of odd degree.

V. Hamiltonian Paths and Circuits

Hamiltonian Path : A Hamiltonian Path in connected graph is a path which
contains each vertex of graph exactly once.

Hamiltonian Circuit : A Hamiltonian circuit is a circuit that contains each
vertex of graph exactly once except for the first vertex, which is also the last.
Hamiltonain Graph : A graph which possesses either Hamiltonian circuit or
Hamiltonian path is called a Hamiltonian graph.

Remarks : I In Hamiltonian circuit or path we have to visit all the vertices. There
may be some unvisited edges.

II. If G has n vertices, then Hamiltonian circuit will contain n edges where as
Hamiltonian Path will contain n — 1 edges.

III. There may be more than one Hamiltonian paths and circuits in a graph.

Some Important Results :
Result I : Let G be a connected simple graph with n vertices, n > 2. Let U and V

are any two non-adjacent vertices in G and deg (U) + deg (V) 2 n, then G is
Hamiltonian.

n

Result II : Let G be a connected simple graph with n vertices, n > 2. If deg(V) 2 DY

for every V € G then G is Hamiltonian.
Result III : Let m be the number of edges in Graph G. If m > % (n* - 3n +2) where

n is number of vertices of G then G is Hamiltonian.
Hamiltonion Circuit in Complete Graph :

Let K be complete graph of n vertices, n > 3. Then K will definitely contain a

n-1
2

Hamiltonian circuit. In fact K will contain Hamiltonian circuits.

For Example : Consider the graph K,.
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=3 . Hamiltonian circuits which are ABCDA,

Then by above result, K, contains I%
ABDCA and ADBCA.

VI. Some Important Examples

Example 1 : Give an example of a connected graph that has

(a) Neither an Euler circuit nor a Hamiltonian circuit.
(b) An Euler circuit but not Hamiltonian circuit.

(c) A Hamiltonian circuit, no Euler circuit.
(d) Both an Hamiltonian circuit and Euler circuit.
Sol. (a) A connected graph that has neither an Euler circuit nor a Hamiltonian
circuit is
(b) A connected graph that has an Euler circuit but not Hamiltonian circuit is
o //‘/ - b
\
\\
\
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(c) A connected graph that has a Hamiltonian circuit and no Euler circuit is
e T
7 e "\
\
\
/
/
/
‘_ /
(d) A connected graph that has both is Hamiltonian circuit and Euler circuit is

N

Example 2 : Draw a planar representation of each of the following graphs.

D
(a) (b) ()

(@)

The graph (c) is non-planar.



B.A. PART-III 86 MATHEMATICS : PAPER-III (OPT.])

Example 3 : Determine the number of regions defined by a connected planar graph
with 4 nodes and 8 edges. Draw such a graph.
Sol. Here |V| =4, |E| =89
By Euler's formula.
R=|E|-|V|+2=8-4+2=6
The given connected graph has 6 regions.
The required graph is.

R N\\R,

Example 4 : Find Hamiltonian paths for each of the following graphs and show

that no Hamiltonian circuit exits.

Sol. The Hamiltonian path for the graph (a) is as shown by the heavy lines.

Vv, v,

ie. W=v ev,e v, e v, eV,
is a Hamiltonian path
clearly the graph has no Hamiltonian circuit (as it has to cross the vertex V, twice)

The Hamiltonian path for the graph (b) is as shown by the heavy line
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€ Vi
. . €5
1
Vg L
— B Vi

V, €n
ey - & S

]

ell V,

i'e' w = Vll e16 V10 e13 Vl e1 V2 e2 VS e3 V4e4 VSCS V6 e10 V7 e11 VS el4 V9

is a Hamiltonian path

clearly the graph has no Hamiltonian circuit (as it has to cross the vertex V or V,or
V,,or V  twice).

VII. Travelling Salesman Problem

Suppose a salesman wants to visit a certain number of cities starting from his
headequarters. The distances (or cost or time) of journey between every pair of
cities, denoted by Cy» that is, distance from city i to city j is assumed to be known.
The problem is:

Salesman starting from his home city visited each city only once and returns to his
home city in the shortest possible distance (or at the least cost or in the least time).
Given n cities and distance Cy» the salesman starts from city 1, then any permutation
of 2, 3,...., n represents the number of possible ways for his tour. So, there are (n—
1)! possible ways for his tour. The problem is to select an optimal route that could
achieve his objective.

The problem may be classified as :

(i) Symmetrical : If the distance between every pair of cities is independent of
the direction of his journey.

(it) Asymmetrical : For one or more pair of cities the distance changes with the
direction.

Example 5

A machine operator processes five types of items on his machine each week, and
must choose a sequence for them. The set-up cost per change depends on the item
presently on the machine and the set-up to be made according to the following
table.
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To item
From item A B C D E
A © 4 7 3 4
B 4 © 6 3 4
C 7 6 e 7 5
D 3 3 7 © 7
E 4 4 5 7 ©

If he processes each type of item once and only once each week, how should be

sequence the items on his machine in order to minimise the total set-up cost?

Solution :

Step 1: Reduce the cost matrix using Step 1 and 2 of the Hungarian algorithm and

then make assignments in rows and columns having single zeros as usual.

B N = 8

o]

%[ ~ 8

8 N W

w

wsm&@

1
1
]
4

[o 0]

Step 2: Note that row 2 is not assigned. So, mark V to row 2. Since there is a zero in

the 4th column of the marked row, we tick 4th column. Further, there is an

assignment in the first row of 4th column. So, tick first row. Draw lines through

all unmarked rows and marked columns. We can find the number of lines is

4 which is less than the order of the matrix. So, go to next step (see table).

w
1
2
X
[]

%[~ 8

8 N W

w

[0]
R
)

o]

W

1
1
[0]
4

[co]
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Step 3: Subtract the lowest element from all the elements not covered by these lines
and add the same with the elements at the intersection of two lines. Then we
get the table as:

1 2 3 4 5
1 w ¢ 2 [0] X
2 [0] w0 1 3¢ %4
3 2 1 ) 3 @
4 0 [0] 3 o 4
5 X X X ©

The optimum assignment is 154, 2—1, 355, 452, 553 with minimum cost as Rs.
20.
This assignment schedule does not provide us the solution of the travelling salesman
problem as it gives 154, 452, 2—1, without passing through 3 and 5.
Next, we try to find the next best solution which satisfies this restriction. The next
minimum (non-zero) element in the cost matrix is 1. So, we bring 1 into the solution.
But the element 'l' occurs at two places. We consider all cases separately until we
get an optimal solution.
We start with making an assignment at (2, 3) instead of zero assignment at (2,1).
The resulting assignment schedule is
154,4—-52,2—->53,3>5,5>1
When an assignment is made at (3, 2) instead of zero assginment at (3, 5), the
resulting assignment schedule is
155 553,352,254, 4->1
The total set-up cost in both the cases is 21.
Example 6
Solve the travelling salesman problem given by the following data :
c,=20,c,=4,¢,=10,¢c,,=5,¢,,=6
c,s= 10, c,;= 6, c,, = 20 where C,=C;

J

and there is no route between cities i and j if the value for cij is not shown.
Solution : The cost matrix is :
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© 20 4 10 o
20 © 5 © 10
4 5 o 6 6
10 © 6 © 20
© 10 20 S

Repeating the steps as before using the Hungarian algorithm, the optimum table
obtained is :

oo 12 [0] )24 @
11 © 3¢ ' @
X 1 0 )4 1
LI 9
0 [0 2t w

The solution is

153,354,4-51,552,2->5
which is not the solution of the travelling salesman problem as the sequence
obtained is not in the cyclic order.
The next lowest number (other than 0) is 1. Therefore, make an assignment in the
cell (3, 2) having the element 1. Consequently, make an assignment in the cell (5,
4) having element 8, instead of zero element in the cell (5, 2). The assignment Table

is

12 ]
B
n ®

©
1

©
X

oo}
(]
1
9

X X
[®] 8 8 ®

=
11
R

]
®

oo}

The shortest path for the travelling salesman is 1>3, 3>2, 2>5, 5>4, 4>1
VIII. Introduction to Trees:

A graph G is called a tree if it is connected and contains no cycles.
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ae .b b. .C

For example : is a tree but

d c a d

is not a tree as it contains a cycle b,c,d,b.
Note : (1) A tree has to be a simple graph i.e. having neither a self loop nor parallel
edges because both of them form cycles.
(2) A tree is said to be directed if every edge of tree is assigned a direction,
otherwise it is undirected.
Some Basic Terms Used in Trees :

Consider the following tree

(i) Node : It is the key component of tree which stores information and
can have one or more links for connecting to other nodes.

(ii) [Edge : A directed line from one node to another mode is called edge,
link, arc or branch of a tree.
For example : ab, ac are edges.

(iii) Root : The vertex having indegree zero is called root of tree.
For example : a is the root of above tree.

(iv) Path : A path is a sequence of nodes when we traverse from one node

to other along the edges which connect them.
e.g. : Path fromatofisa,c,f.

(v) Level : Level of node is an integer value that measures the distance of

a node from the root.
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e.g. : Root is at level O, The Child(s) of root are at level 1 and so on.
Depth : The depth of node is the length of path from node to root of
tree. Root has depth O.

Rooted Tree : A rooted tree is a directed tree which contains a unique

vertex with in-degree zero and every other vertex has in-degree one.
e.g. : The above tree is a rooted tree with root 'a'.

(viii) Parent and Offspring : If (x, y) is any directed edge, then x is called

(ix)

(%)

(xi)

parent of y and y is called offspring of x. Root of tree has no parent whereas
every other node has a unique parent. A parent can have several
offsprings which is also called child or son.

e.g. : a is the parent of b and c. b has two offsprings d and e.

Leaf : A node having no offsprings (outdeg ree = 0) is called a leaf or
external node or terminal node.

e.g. : d, e, f are leaves.

Siblings : Two nodes having same parent are called siblings.

e.g. : b,c are siblings of a.

Interior Node : Node with atleast one child.

(xii) Forest : It is an undirected graph whose components are all trees.

Binary Tree :
A tree T is called n-Tree or n-ary tree if every vertex has atmost n offsprings. In

particular, if n = 2, then tree is called binary tree or It is that tree in which every

node can have O, 1, or 2 offsprings. Moreover, if in n-tree, every vertex of T other than

leaves, has exactly n-offsprings, then T is called complete n-Tree. For n = 2, it is

complete binary tree.

For example :

d isa binary tree.

Moreover, every vertex (except leaves) has 2 children, so it is complete binary tree.
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IX. Properties of Trees:
Here, we state some important properties of trees (the proof is left as an exercise for
the reader) :
Property I: There is one and only one path between every pair of vertices
in a tree T.
Property II: If in a graph G, there is one and only one path between every
pair of vertices, then G is tree.
Property III: A tree with n vertices has n-1 edges.
Property IV: A graph is a tree iff it is minimally connected.
PropertyV: A graph G with n vertices, (n-1) edges and no circuit is
connected.
Property VI: In any non-trivial tree, there are atleast two vertices of
degree—1 (or two pondent vertices)
Labelled Trees : A tree is paid to be labelled in which every vertex of tree has

assigned a unique label.

For Example :

is labelled binary tree for the expression
(2-(3xx) + ((x=-3) - (2 +x)).
X. Traversal of Binary Trees or Tree Searching
Traversing means to visit each node of tree exactly once. The three standard ways of
traversing a binary tree T with root R, are :
Preorder : Process the rootR. Then, traverse the left subtree of R in preorder
and then traverse the right subtree of R in preorder.
Inorder : Traverse the left subtree of R in inorder. Process the root R and
then traverse the right subtree of R in inorder.
Postorder: Traverse the left subtree of R in post order, then traverse the
right subtree of R in postorder and then process the root R.
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For Example :

For the tree :
Preorder Traversal : A, B, D, E, C, F
Postorder Traversal : D, E, B, F, C, A
Inorder Traversal : D, B, E, A, C, F
XI. Spanning Tree
Let G be a connected graph. A subgraph T is called spanning tree if
(1) T is true and
(ii) T contains all vertices of G.

T G

T is a spanning tree for the connected graph G.
Remarks :
(1) A spanning tree of graph is not unique.
(2) A graph G is connected iff it has a spanning tree (Proof : Do Yourself)
(3) Cayley's Theorem : The complete graph K_has n"? different spanning
trees.
Minimal Spanning Tree : It is a spanning tree of a weighted graph, with the
condition that sum of weights of tree is as small as possible.
Kruskal's Algorithm (To find minimal spanning tree)
Let G be the given connected graph. Then, the algerithm involves following steps :

1. Write all the edges of graph in increasing order of their weight.
2. Select the smallest edge of G.
3. For each successive step, select another smallest edge of G which makes

no cycle with previously selected edges.
4. Go on repeating step 3 until n-1 edges have been selected. The sum of
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weights of there n—-1 edges will constitute required minimal spanning

tree.

Here, no. of vertices (n) = 5 Firstly, we write all the edges in increasing order of their

weight.
E = {CD, BD, CE, AB, BC, AD, AE, DE, AC}
We start from edge CD and then select edges one by one from E until we select 4 (i.e.

n-1) edges.
(i) (ii) Select next edge BD
C
1 B
C
2
1
D
D
(iii) Select next edge CE (iv) Select next edge AB
B C
1
2 2
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Since, we have selected 4 edges, so we stop here. Sum of weights is
1+2+2+3 =38

Self Check Exercise :

XII.

1. Give an example of graph that has
(1) Euler Circuit but not Hamiltonian Circuit.
(ii) Hamiltonian Circuit but not Euler Circuit.
2. Let G = (V, E) be a simple, connected Planar graph with more than one

edge, then the following inequalities holds.
(i) 2 |E| 23R (i) |[E| £3|V]| -6
(iii) There is a vertex v of G such that deg (v) < 5.
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