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SET THEORY, INCLUSION-EXCLUSION PRINCIPLE
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1.1.1 Introduction

Firstly, we introduce a set as :

Def. Set : A set is a well defined collection of distinct objects.

The word 'well defined' implies that we are given a rule with the help of which we

can say whether a particular object belongs to the set or not. The word 'distinct'

implies that repetition of objects is not allowed. Each object of the set is called an

element of the set. Further, sets are generally denoted by capital letters A,B,C,.....

while elements of the sets are denoted by small letters a,b,c, ........ .

For Example : (i) The set of days of a week.

(ii) The set of even integers.

A set can be represented in two ways :

1
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(1) Tabular or Roster Method

(2) Set-builder or Rule Method

In roster form, we represent a set by listing all its elements within curly brackets { },

separated by comma's while in the set-builder form, we do not list the elements

but the set is represented by specifying the defining property.

For Example : Set Roster form Set-builder form

(1) A set of vowels A = {a, e, i, o, u} A = {x : x is a vowel of

english alphabet}

(2) A set of positive even A = {2, 4, 6, 8, 10} A = {x : x is a positive even

    integers upto 10 integer and x  10}

There are some basic mathematical sets, such as

N = Set of all natural numbers

W = Set of all whole numbers

I a Z = Set of all integers

Q = Set of all rational numbers

R = Set of all real numbers

1.1.2 Some Basic Terms in Set Theory

Membership of a Set : If an object x is a member of the set A, we write xA,

which can be read as 'x belongs to A' or A contains x. Similarly, we write x A to

show that x is not a member of the set A.

For Example : Let A = {1, 2, 4, 6, 7}. Here 2 A but 5 A.

Finite Set : A set is said to be finite if it has finite no. of elements.

For Example : A = {2, 4, 6, 8}

Infinite Set : A set is said to be infinite if it has an infinite number of elements.

For Example : A = {1,2, 3.......} and B = {x : x is an odd integer} are infinite sets

Singleton Set : A set containing only one element is called a singleton or a unit set.

For Example : A = {x : x is a perfect square and 30  x  40} = {36}

Empty, Null or Void Set : A set which contains no element, is called a null set and

is denoted by  (read as phi).

For Example : 2 1
A x : x is a positive integer satisfying x

4
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Sub-Set, Super-Set : If every member of a set A is a member of a set B, then A is

called sub-set of B and B is called super-set of A.

or if x A x B, then A is a sub set of B and B is a super set of A and we write it

as, A B which means A is contained in B or B contains A.
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Note 1. Since every element of A belongs to A

 A  A every set is sub set of itself.

2. The empty set is taken as a sub-set of every set.

For Example : Let A = {1, 2, 3, 4, 5, 6, 8, 10}, B = {2, 4, 6, 10}, C = {1, 2, 7, 8}.

Now every element of B is an element of A, B A

Again 7 C, but 7 A

 C A i.e., C is not a sub-set of A.

Equality of Sets : Two sets A and B are said to be equal if both have the same

elements. In other words, two sets A and B are equal when every element of A is an

element of B and every element of B is element of A.

i.e., if A B and B A, then A = B.

For Example : A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and B = {x : x is a natural number and

1 x 10}

Hence, A = B.

Proper Sub-set : A non-empty set A is said to be a proper subset of B if A B and

A B.

Note : (i) and A are called improper subsets of A.

(ii) If A has n elements, then number of subsets of A is 2n.

Power set : The power set of a finite set is the set of all sub-sets of the given set.

Power set of A is denoted by P(A).

For Example : Take A = {1, 2, 3}

 P(A) = {, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Universal Set : If all the sets under consideration are sub-sets of a fixed set U,

then U is called a universal set.

For Example : In Plane geometry, the universal set consists of points in a plane.

Comparable and Non-comparable Sets : Two sets are said to be comparable

if one of the two sets is a sub-set of the other. Otherwise they are said to be non-

comparable.

For Example : Let A = {2, 3, 5}, B = {2, 3, 5, 6}.

Here A B, so A and B are comparable sets.

Order of a Finite Set : The number of different elements of a finite set A is

called the order of A and is denoted by O(A).

For Example : If A = {2, 3, 6, 8}, then O(A) = 4

Equivalent Sets : Two finite sets A and B are said to be equivalent sets if the

total number of elements in A is equal to the total number of elements in B.

For Example : Let A = {1, 2, 3, 4, 6}, B = {1, 2, 7, 9, 12}

 O(A) = 5 = O(B) A and B are equivalent sets, denoted as A ~ B.
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Cardinality : Number of different elements in a set is known as its cardinality.

1.1.3 Operations on Sets

In order to represent various operations on sets, we use a special type of diagrams,

called venn diagrams defined as :

Venn Diagrams : The relations between sets can be illustrated by certain diagrams

called Venn diagrams. In a Venn diagram, universal set U is represented by a

rectangle and any sub-set of U is represented by a circle within a rectangle U.

Now, various operations of set theory are discussed below :

1.1.3.1 Union of Two Sets

If A and B be two given sets, then their union is the set consisting of all the elements

of A together with all the elements in B. We should not repeat the elements. The

union of two sets A and B is written as A B.

In symbols, A B = {x : x A or x B}

For Example : Let A = {1, 2, 3, 5, 8}, B = {2, 4, 6}

 A B = {1, 2, 3, 4, 5, 6, 8}

1.1.3.2 Intersection of two sets

The intersection of two sets A and B, denoted by A B, is the set of elements

common to A and B.

In symbols, A B = {x : x A and x B}
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For Example : Let A = {2, 4, 6, 8, 10, 12}, B = {2, 3, 5, 7, 11}

 A B = {2}

Disjoint Sets : If A and B are two given sets such that A B = , then the sets A

and B are said to be disjoint.

For Example : Let A = {a, b, c, d}, B = {l, m, n, p},

 A B = A and B are disjoint sets.

1.1.3.3 Difference of two sets

The difference of two sets A and B is the set of those elements of A which do not

belong to B. We denote this by A – B.

In symbols, we write A – B = {x : x A and x B}

A – B is also sometimes written as A/B.

[Similarly, We can define B-A = {x : x B and x A}]

For Example : Let A = {a, b, c, d, e}, B = {c, d, e, f, g}

Then, A – B = {a, b} and B-A = {f, g}

Note. B – A  A – B

Symmetric Difference of Two Sets

If A and B are any two sets, then the set (A – B)  (B – A) is called symmetric

difference of A and B and is denoted by A B.

In symbols, we write

A B = {x : (x A and x B) or (x B and x A)}
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For Example : Let A = {1, 2, 4}, B = {1, 2, 3, 4, 6}

 A B = (A/B) (B/A) = (A – B) (B – A) = {4} {3, 5, 6} = {3, 4, 5, 6}.

1.1.3.4 Complement of a Set

Let A be a subset of universal set U. Then the complement of A is the set of all

those elements of U which do not belong to A and we denote complement of A by

Ac or A'. We can write Ac = {x : x U, x A}

For Example : If U = {2, 4, 6, 8,10}, A = {4, 8}, then Ac = {2, 6, 10}

Note. Uc = and c = U, (Ac)c = A.

1.1.4 Some Fundamental Laws of Algebra of Sets

I. Idempotent Laws

Statement : If A is any set, then (i) A A = A (ii) A A = A

Proof : (i) L.H.S. = A A

= {x : x A A} = { x : x A or x A}

= {x : x A} = A

= R.H.S.

(ii) Do Yourself.

II. Identity Laws

Statement. If A is any set, then (i) A = A (ii) A U = A

Proof : (i) L.H.S. = A = {x : x A }

= {x : x A or x } = {x : x A}

= A = R.H.S.

(ii) Do Yourself.

III. Commutative Laws

Statement. If A and B are any two sets, then (i) A B = B A (ii) A B = B A

Proof : Do Yourself.
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IV. Associative Laws

Statement. If A, B and C are any three sets, then

(i) A (B C) = (A B) C (ii) A (B  C) = (A B) C

Proof : Do Yourself.

V. Distributive Laws

Statement. If A, B, C are any three sets, then

(i) A (B C) = (A B) (A C)

(ii) A (B  C) = (A B) (A C)

Proof : L.H.S. = A (B C)

= {x : x A (B C)}

= {x : x A or x (B C)}

= {x : x A or (x B and x C)}

= {x : (x A or x B) and (x A or x C)}

= {x : x (A B) and x (A C)}

= {x : x (A B) (A C)}

= {(A B) (A C)}

= R.H.S.

 A (B C) = (A B) (A C)

Note. We can also prove above result by showing that

A (B C) (A B) (A C) and (A B) (A C) A (B C)

(ii) Do Yourself.

VI. De Morgan's Laws

Statement. If A and B are two sub-sets of U, then

(i) (A B)c = AC Bc (ii) (A B)c = Ac Bc

Proof : (i) L.H.S. = (A B)c = {x : x (A B)c}

= {x : x (A B)}

= {x : x A and x B}

= {x : x Ac and x Bc}

= {x : x (Ac Bc)}

= Ac Bc = R.H.S.

 (A B)c = Ac Bc

(ii) Do Yourself.

1.1.5 Some Important Examples

Example 1.1 : Let U be the set of integers and let A = {x : x is divisible by 3}, let B =

{x : x is divisible by 2}. Let C = {x : x is divisible by 5}. Find the elements in each of

the following set :
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(a) A B (b) A C (c) A (B C) (d) (A B) C

(e) Ac Bc (f) (A B)c (g) B/A (h) A/B (i) A/(B/C)

Sol. : U = {0, ± 1, ± 2, ± 3, ± 4,...........}

A = {x : x is divisible by 3} = {x : x = 3 n, n I} = N
3

B = {x : x is divisible by 2} = {x : x = 2n, n I} = N
2

C = {x : x is divisible by 5} = {x : x = 5 n, n I} = N
5

(a) A B = N
3 
N

2 
= N

6   l.c.m. {2, 3} = 6

= {........... –12, –6, 0, 6, 12, ........}

(b) A C = N
3 
N

5 
= {.......... –9, –6, –5, –3, 0, 3, 5, 6, .........}

(c) A (B C) = (A B) (A C) = (N
3 
N

2
) (N

3 
N

5
) = N

6 
N

15

= {.........–15, –12, –6, 0, 6, 12, 15............}

(d) (A B) C = {N
3 
N

2
} N

5 
= N

6 
N

5

= {......... –12 – 10, 6, –5, 0, 5, 6, 10, 12,.........}

(e) Ac Bc = (A B)c = (N
3 
N

2
)c

= {......... –11, –7, –5, –1, 1, 5, 7, 11,............}

(f) (A B)c = (N
3 
N

2
)c = (N

6
)c

= {–7, –5, –3, –2, –1, 1, 2, 3, 4, 5, ............}

(g) A/B = N
3
/N

2 
= N

3 
– N

2

= {........ – 10, –8, –4, –2, 2, 4, 8, 10 .........}

(h) B/A = N
2
/N

3 
= N

2 
– N

3

= {............. –15, –9, –3, 3, 9, 15, ..........}

(f) A/(B/C) = (A/B) (A C)

= (N
3
/N

2
) (N

3
 N

5
) = (N

3
/N

2
) N

15

= {..........., –15, –9, –3, 3, 9, 15, .............} {......... 30, 15, 0, 15, 30........}

= {..........., –15, –9, –3, 3, 9, 15, .............).

Example 1.2 : Prove that A (B/A) = A B.

Sol. : L.H.S. = A (B/A) = A (B – A)

= A (B Ac) [ A – B = A Bc]

= (A B) (A Ac) [Distributive Law]

= (A B) X [A Ac = X]

= A B = R.H.S.

Example 1.3 : Let A = {1, 2, 4}, B = (4, 5, 6},

Find A B, A B and A – B.
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Sol. A = {1, 2, 4} and B = {4, 5, 6}

(i) A B = {1, 2, 4} {4, 5, 6} = {1, 2, 4, 5, 6}

(ii) A B = {1, 2, 4} {4, 5, 6} = {4}

(iii) A – B = {1, 2, 4} – (4, 5, 6} = {1, 2}.

Example 1.4 : Prove that A B = A B iff A = B

Sol. : (i) Assume that A B = A B ... (1)

Let x be any element of A

 x A x A B x A B [  of (1)]

x B

 x A x B

 A B

Similarly, B A ... (2)

From (2) and (3), A = B. ... (3)

 A B = A B A = B

(ii) Assume that A = B

 A B = A A = A

A B = A A = A

 A B = A B

 A = B A B = A B.

Example 1.5 : For any two sets A and B, prove that A B =  A Bc.

Sol. : We are given that A B =  ... (1)

Let x be any element of A

 x A x B [of (1)]

 x Bc

 x A x Bc

But x is any element of A

 every element of A is an element of Bc

 A Bc.

Example 1.6 : Prove that Ac/Bc = B/A

Sol. : L.H.S. = Ac/Bc

= Ac – Bc = {x : x (Ac – Bc)} = {x : x Ac and x Bc}

= {x : x A and x B} = {x : x B and x A}

= { x : x (B – A)} = B – A = B/A

= R.H.S.
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 Ac/Bc = B/A.

Example 1.7 : Show that A (B – C) = (A B) – (A C)

Sol. : R.H.S. = (A B ) – (A C)

= (A B) (A C)c = (A B) (Ac Cc)

= [(A B) Ac] [A B) Cc]

= [(A Ac) B] [A (B Cc)] = (B) [A (B – C)]

= [A (B – C)] = A (B – C) = L.H.S.

1.1.6 Cartesian Product of Sets

Ordered-Pair : By an ordered pair of elements, we mean a pair (a, b) such that a 

A and b B. The ordered pairs (a, b), (b, a) are different unless a = b. Also}

(a, b) = (c, d) iff a = c, b = d.

Cartesian Product of Two Sets : The set of all ordered pairs (a, b) of element

a A, b B is called the cartesian product of the sets A and B and is denoted by

A × B.

In symbols, A × B = {(a, b) : a A, b B}

Note 1. A × B and B × A are different sets if A B.

2. A × B = when one or both of A, B are empty.

Art 1.1 : Prove that

(i) A × (B C) = (A × B) (A × C)

(ii) A × (B C) = (A × B) (A × C)

Proof : (i) L.H.S. = A × (B C)

= {(x, y) : x A and y (B C)}

= {(x, y) : x A and (y B or y C)}

= {(x, y) : (x A and y B) or (x A and y C)}

= {(x, y) : (x, y) (A × B) or (x, y) (A × C)}

= {(x, y) : (x, y) (A × B) (A × C)}

= (A × B) (A × C) = R.H.S.

 A × (B C) = (A × B) (A × C)

(ii) L.H.S. = A × (B C)

= {(x, y) : x A and y (B C)}

= {(x, y) : x A and (y B and y C)}

= {(x, y) : (x A and y B) and (x A and y C)}

= {(x, y) : (x, y) (A × B) and (x, y) (A × C)}

= {(x, y) : (x, y) (A × B) (A × C)}
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= (A × B) (A × C) = R.H.S

 A × (B C) = (A × B) (A × C).

Example 1.8 : Let A = {1, 2, 3}, B = {2, 4}. Find A × B and show it graphically.

Sol. Here A = {1, 2, 3}, B = {2, 4}

A × B = {1, 2, 3} × {2, 4} = {(1, 2), (1, 4), (2, 2), (2,4), (3, 2), (3, 4)}.

Now to represent (1, 2), we draw a vertical line through 1 and a horizontal line

through 2. These two lines meet in the point which represents (1, 2). Similarly we

can represent the other points in A × B and get the graphical representation of A × B.

Example 1.9 : A, B, C are any three sets, then prove that

(A B) × C = (A × C) (B × C)

Sol. : L.H.S. = (A B) × C

= {(x, y) : x (A B) and y C}

= {(x, y) : (x A and x B) and y C}

= {(x, y) : (x A and y C) and (x B and y C)}

= {(x, y) : (x, y) (A × C) and (x, y) (B × C)}

= {(x, y) : (x, y) (A × C) (B × C)}

= (A × C) (B × C) = R.H.S.

1.1.7 Partition of Sets

A partition of a non-empty set A is a collection P = {A
1
, A

2
, A

3
,............} of subsets of A

such that

(i) A = A
1 
A

2 
A

3 
..........

and (ii) A
i 
A

j 
= for i j

A
1
, A

2
, A

3
,...... are called cells or blocks of the partition P.
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For Example : (i) Let A = {a, b, c} be any set.

Then, P
1 
= {{a}, {b}, {c}}, P

2 
= {{a}, {b, c}}, P

3 
= {{b}, {a, c}},

P
4 
= {{c}, {a, b}}, P

5 
= {{a, b, c}} are partitions of the set A.

(ii) Let Z = set of integers. Then the collection

P = {{n} : n Z} is a partition of Z.

Minimum Set or Minset or Minterm :

Let A be any non-empty set and B
1
, B

2
,.........., B

n 
be any subsets of A. Then the

minimum set generated by the collection {B
1
, B

2
, ......, B

n
} is a set of the type D

1
 D

2

........... D
n
, where each D

1
, D

2
, .........., D

n 
is B

i
or B

i
c
 
for i = 1, 2, 3,......., n.

For Example : The minsets generated by two sets B
1

 & B
2 
are

A
1 
= B

1 
B

2
', A

2 
= B

1 
B

2 
, A

3 
= B

1
C B

2
, A

4 
= B

1
C B

2
C.

Normal form (or Canonical form) :

A set F is said to be in minset normal (or cannonical) form when it is expressed

as the union of distinct non-empty minsets or it is 

i.e., either F = or F = 
s

iA , where A '  
 are non-empty minsets.

Principle of Duality for Sets :

Let S be any identity in set theory involving the operation union (),

intersection (). Then the statement S* obtained from S by changing union to

intersection to union and empty set to universal set U, U to  is also an identity

called the dual of the statement S.

Remark : The number of minsets generated by n sets is 2n.

1.1.8 The Inclusion-Exclusion Principle

It is the most general form of addition principle for enumeration. As we know

that number of elements of a finite set A is denoted by n (A) or |A|, so following

results regarding number of elements should be kept in mind for doing problems :

1. n (A B) = n (A) + n (B) – n (A B)

2. n (A B) = n (A) + n (B)  A, B are disjoint sets.

3. n (A B) = n (A – B) + n (B – A) + n (A B)

4. n(A) = n (A – B) + n (A B)

5. n (B) = n (B – A) + n (A B)

6. n (A B C) = n (A) + n (B) + n (C) – n (A B)

–n (B C) – n (C A) + n (A B C)

7. n (A' B') = n (A B')   = n (U) –n (A B)

8. n (A' B') = n ((A B)') = n (U) – n (A B)

9. n (A B' C') = n (A) – n (A B) – n (A C) + n (A B C)

Proof : (1) We know that A B is the union of three disjoint sets

A - B, A B and B – A.

's
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 n (A B) = n (A – B) + n (B – A) + n (A B) (1)

Again A is union of A – B and A B, which are disjoint sets

 n (A) = n (A – B) + n (A B)

Similarly, n (B) = n (B – A) + n (A B)

Adding (2) and (3), we get

n (A) + n (B) = n (A – B) +n (B – A) + 2n (A B)

= [n (A – B) + n (B – A) + n (A B)] + n (A B)

 n (A) + n (B) =n (A B) + n (A B)  of (1)

 n (A B) = n (A) + n (B) – n (A B)

Proof of  (2) Since A and B are disjoint sets

 A B = n (A B) = 0

 n (A B) = n (A) + n (B) – 0 or n (A B) = n (A) + n (B).

Proof of  (6) L.H.S. = n (A B C) = n [(A (B C)]

= n (A) + n (B C) – n [A (B C)]

= n (A) + n (B) +n (C) – n (B C) – n [(A B) (A C)]

= n (A) + n (B) + n (C) – n (B C) – [n (A B) + n (A C)

– n [(A B) (A C)]

= n (A) + n (B) + n (C) – n (B C) – n (A B) – n (A C) + n (A B C)

 n (A B C) = n (A) + n(B) + n (C) – n (A B) – n (B C)

– n (C A) + n (A B C).
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Example 1.10 : In a group of 50 persons, 14 drink tea but not coffee and 30 drink tea.

Find

(i) How many drink both tea and coffee ?

(ii) How many drink coffee but not tea ?

Sol. Let T denote the set of persons drinking tea and C denote the set of persons

drinking coffee.

 n (T C) = 50, n (T) = 30, n (T CC) = 14

(i) now n (T CC) = n (T) – n (T C)

 14 = 30 – n (T C) n (T C) = 16

 number of persons drinking both tea and coffee = 16

(ii) Also n (T C) = n (T) + n (C) – n (T C)

 50 = 30 + n (C) – 16 n (C) = 36

 number of persons drinking coffee but not tea

= n (C TC) = n (C) – n (C T)

= n (C) – n (T C) = 36 – 16 = 20

Example 1.11 : A survey of 500 television watchers produced the following information:

285 watch football, 195 watch hockey, 115 watch basketball, 45 watch football

and basketball, 70 watch football and hockey, 50 watch hockey and basketball, 50 do

not watch any of the three games.

How many watch all the three games ? How many watch exactly one of the

three games ?

Sol. Let F, H, B denote the sets of viewers who watch football, hockey, basketball

respectively.

 n (F) = 285, n (H) = 195, n (B) = 115, n (F B) = 45,

n (F H) = 70, n (H B) = 50, n (F H B)c = 50

Also total number of viewers = 500

Now n (F H B)C = 50

 500 – n (F H B) = 50

 n (F H B) = 450

 n(F) + n(H) + n(B) – n (F H)–n (H B) –n (B F)

+ n (F H  B) = 450

 285 + 195 + 115 – 70 – 50 – 45 + n (F H B) = 450

 n (F H B) = 20

 number of viewers watching all the three games = 20.

Number of viewers watching football alone = n (F HC BC)

= n (F) – n (F H) – n (F B) + n (F H B)

= 285 – 70 – 45 + 20 = 190

Number of viewers watching hockey alone = n (H FC BC)
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= n (H) – n (H F) – n (H B +n (F H B)

= 195 – 70 – 50 + 20 = 95

Number of viewers watching basketball alone = n (B HC FC)

= n(B) – n (B H) – n (B F) + n (F H B)

= 115 – 50 – 45 + 20 = 40

 number of viewers watching exactly one of the three games

= 190 + 95 + 40 = 325.

Example 1.12 : Find how many integers between 1 and 60 are neither  divisible by 2

nor by 3 and nor by 5 ?

Sol. Let A, B and C be the set of integers between 1 and 60 divisible by 2, 3 and 5

respectively.


60 60 60

n(A) 30, n(B) 20, n(C) 12
2 3 5

                    

and
60

n(A B) 10,
2 3

     
 

60 60
n (A C) 6, n (B C) 4

2 5 3 5

               


60

n (A B C) 2
2 3 5

       

Number of integers between 1 and 60 which are divisible by 2, 3 or 5 are

= n (A B C)

= n(A) + n(B) + n(C) – n (A B) + n (A C) – n(B C) + n (A B C)

= 30 +20 + 12 – 10 – 6 – 4 + 2 = 44

 the number of integers between 1 and 60 that are not divisible 2, 3 or 5

= 60 – 40 = 16.

1.1.9 Languages & Grammars

Let A be a set whose elements are called letters. Then, A is known as Alphabet.

A word or string on the set A is a finite sequence of its elements.

For Example : u = ababb, v = accbaaa are words on alphabet A = {a,b,c}

The empty sequence of letters is denoted by  and it is known as empty word.

The length of word is written as |u| or l(u).

If u = a
1
a

2
...a

n
, then l(u) = n and if u = , then l(u) = 0.

Now, we may define a language as –

Language : A language L over an alphabet A is collection of words on A. L is a subset

of A, where Ais the set of all words on A.



16B.A. PART-III MATHEMATICS : PAPER-III (OPT.I)

For Example : If A = {a,b}, then L
1
={a, ab, ab2,...} which consists of all words beginning

with a and followed by zero or more b's and L
2
 = {ambn; m > 0, n > 0] which consists of all

words beginning with one or more a's followed by one or more b's, are languages over

A.

Grammar : A grammar consists of four parts

(1) A finite set V of elements called variables or non-terminals.

(2) A finite set T of elements called Terminals.

(3) An element S in V called the star symbol.

(4) A finite set P of productions. A production is an ordered pair (, ) usually

written as  where are words in V, T. At least one of the or 

must contain a variable. Such a Grammar is denoted by G (V, T, S, P)

Terminals are denoted by a, b, c, .......... .

Variables are denoted by A, B, C, ........... .

S denotes the start variable.

will denote words in both variables and terminals.

We write, (
1
, 

2
, ...... 

k
) for

The production 
1
, 

2
, ........, 

k
.

Types of Grammars :

(1) A type O grammar has no restrictions on its productions.

(2) A grammar G is of Type-I if every production is of the form where

|| ||.

(3) A grammar G is said to be of Type-2 if every production is of the form

A B i.e. the L.H.S is a non-terminal.

(4) A grammar G is said tobe of Type-3 if every production is of the form

A a or A aB where L.H.S is a single non-terminal and R.H.S is a

single terminal or terminal followed by a non-terminal or of the form

S .

(5) A grammar G is said to be context sensitive if the production are of the

form A1 1 i.e. we replace the variable A by in a word only when

A lies between and 1.

(6) A grammar G is said to be context free if the productions are of the form

A . (i.e. Replace variable A by regardless of where A appears).

(7) A grammar G is said to be regular if the productions are of the form

A a, A aB, S .

1.1.10Self Check Exercise

1. If A, B are two sets, then show that A B =  A = , B = .

2. Is it true that power set of A B is equal to union of power sets of A and

B ? Justify.

= a
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3. Prove the following :

(i) A (AC B) = A B

(ii) A – (B C) = (A–B) (A–C)

(iii) A – (B C) = (A – B) (A – C)

(iv) A (B – C) = (A B) – (A C)

4. Let A = [+, –], and B = [00, 01, 10, 11]

(a) List the elements of A × B

(b) How many elements do A4 and (A × B)3 have ?

5. If A and B be non-empty subsets, then show that A × B = B × A iff A = B.

6. Use PMI to show that, n3 + 2n is divisible by 3, where n N.

7. Prove that n2+n is even, where n N. (Use PMI)

8. A class has a strength of 70 students. Out of it 30 students have taken

Mathematics and 20 have taken Mathematics but not Statistics. Find

(a) The number of students who have taken Mathematics and Statistics?

(b) How many of them have taken Statistics but not Mathematics ?

9. In a town of 10,000 families, it was found that 40% families buy

newspaper A, 20% buy newspaper B and 10% buy newspaper C. 5%

families buy A and B, 3% buy B and C, and 4% buy A and C. If 2% families

buy all the newspapers, find the number of families which buy (i) A only

(ii) B only (iii) none of A, B, and C.

10. Among integers 1 to 300, how many of them are divisible neither by 3,

nor by 5, nor by 7 ? How many of them are divisible by 3 but not by 5, nor

by 7 ?

Suggested Readings :

1. Dr. Babu Ram, Discrete Mathematics

2. C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill,

International Edition, Computer Science Series, 1986.

3. Discrete Mathematics, S. Series.

4. Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw Hill

Fifth Ed. 2003.
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SEMESTER-V DISCRETE MATHEMATICS-I

LESSON NO. 1.2 Author : Dr. Chanchal

THE BASICS OF COUNTING & PIGEONHOLE PRINCIPLE

Structure :

1.2.1 Introduction

1.2.2 Fundamental Principle of Counting

1.2.3 Permutation

1.2.4 Practical Problems Involving Permutation

1.2.4.1 Circular Permutations

1.2.5 Combination

1.2.6 Practical Problems Involving Combinations

1.2.7 Theory of Probability

1.2.8 Pigeonhole Principle

1.2.9 Self Check Exercise

1.2.1 Introduction

Firstly, we define factorial n as :

Def : The product of all positive integers from 1 to n is called factorial n. It is denoted

by n  or n !.

For Example : 4  = 4.3.2.1 = 24

Note : (i) n n(n 1) (n 2) (n 3).....3.2.1 n n 1     

(ii) 0 1, 1 1 

(iii) Factorial of proper fraction and negative integer is not defined.

Example 1 : Prove that 
n2n

1.3.5........ (2n 1) . 2
n

 

18
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Sol.
2n 1.2.3.4.5.6...... (2n 1) (2n)

L.H.S.
n n


 

   1.3.5.......... (2n 1) 2.4.6......... (2n)

n




   n1.3.5....... (2n 1) . 2 1.2.3......... n

n




  n

n
1.3.5........ (2n 1) . 2 n

1.3.5 ......... (2n 1) 2 R.H.S.
n


   

1.2.2 Fundamental Principle of Counting

If one operation can be performed in 'm' different ways and if corresponding to each of

these m ways of performing the first operation, there are 'n' different ways of

performing the second operation, then the number of different ways of performing

the two operations taken together is m × n.

Example 2 : How many numbers can be formed from the digits 1, 2, 3, 9 if repetition

of digits is not allowed ?

Sol. (a) Numbers with one digit : There are four digits, hence four numbers of one

digit can be formed with the help of these digits.

Hence, number of one digit numbers = 4.

(b) Numbers with two digits : First place of two digit number can be filled in 4 ways

and the second place can be filled in 3 ways.

Hence, number of two digit numbers = 4 × 3 = 12.

(c) Numbers with three digits :

Number of three digits number = 4 × 3 × 2 = 24.

(d) Number with four digits :

Number of four digits numbers = 4 × 3 × 2 × 1 = 24.

Hence, total number of digits formed with the given digits

= 4 + 12 + 24 + 24 = 64.

Example 3 : Given 5 flags of different colours, how many different signals can be

generated if each signal requires the use of 2 flags, one below the other ?

Sol. Number of flags = 5

Number of flags required for a signal = 2
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First place of signal can be filled in 5 ways and corresponding to each way of filling

the first place, there are four ways of filling the second place.

 by fundamental principle of counting.

total number of signals generated = 5 × 4 = 20.

1.2.3 Permutation

Def : It is an arrangement that can be made by taking some or all of a number of

given things. It is denoted by nP
r 
which means number of permutations of n different

things taken 'r' at a time. Further, 
n

r

n
P

n r


 .

Illustration : Consider three letters a, b, c. Now, the permutations of three letters

taken two at a time are : ab, bc, ca, ba, cb, ac, which are 6 in number.

Mathematically, n 3
r 2

3 3
P P 6

3 2 1
  



Note : nP
r 
is also writen as P (n, r)

Example 4 : Find n if P (2n, 3) = 100 P (n, 2).

Sol. Since P (2n, 3) = 100 P (n, 2)

 2nP
3 
= 100 nP

2 
(2n) (2n–1) (2n–2) = 100 n (n–1)

 4n (n–1) (2n–1) = 100n (n–1) 2n– 1 = 25

 n = 13

1.2.4 Practical Problems Involving Permutation

Example 5 : How many words, with or without meaning, can be formed using all the

letters of the word EQUATION, using each letter exactly once. Further, how many

words can be formed if each word is to start with a vowel.

Sol. Number of letters is EQUATION = 8

No. of letters to be taken at a time = 8

 required no. of words 
8

8

8
P 8 7 6 5 4 3 2 1 40320

0
          

Further, vowels in EQUATION are E,U, A, I, O i.e. 5 vowels. If the first place is to be

filled with vowel, it can be filled in 5 ways. Now, remaining 7 places can be filled up

with 7 letters in 7  or 7P
7 
ways.

 required no. of words = 5 × 7  = 5 × (7×6×5×4×3×2×1) = 25200

Example 6 : In how many ways can 5 books on Chemistry and 4 books on Physics be

arranged on a shelf so that the books on same subject remain together ?
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Sol. Consider the 5 books on Chemistry as one book and also 4 books on Physics as

one book.

 two books can be arranged in 2  ways

Also the 5 books on Chemistry can be arranged among themselves in 5  ways and 4

book on Physics in themselves in 4  ways.

 required number of ways = 2 5 4 

= (2 × 1) × (5 × 4 × 3 × 2 × 1) × (4 × 3 × 2 × 1)

= 2 × 120 × 24 = 5760.

Example 7 : In how many ways can 4 boys and 3 girls be seated in a row so that two

girls are together ?

Sol. Let 4 boys the B
1
, B

2
, B

3
, B

4

× B
1 
× B

2 
× B

3 
× B

4 
×

 no two girls are together

 three girls can be arranged in 5 '×' marked places in 5P
3 
ways.

Also 4 boys can be arranged among themselves 4  ways

 required number of ways = 5P
3 
× 4

= (5 × 4 × 3) × (4 × 3 × 2 × 1)

= 60 × 24 = 1440

Example 8 : How many numbers greater than 40000 can be formed using the digits

1, 2, 3, 4 and 5 if each digit is used only once in each number ?

Sol. Given digits are 1, 2, 3, 4, 5

 number of given digits = 5

Number of digits to be taken at a time = 5

Since number is to be greater than 4000

 first digit from left should be either 4 or 5

i.e. first place can be filled in 2 ways.

Remaining 4 places with 4 digits can be filled in 4P
4 
ways

 required numbers = 2 × 4P
4 
= 2 × (4 × 3 × 2 × 1) = 2 × 24 = 48.

Example 9 : How many different signals can be formed with five given flags of different

colours ?

Sol. Number of flags = 5

A signal may formed by hoisting any number of flags at a time.

Number of signals by hoisting one flag at a time = 5P
1

Number of signals by hoisting two flags at a time = 5P
2
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Number of signals by hoisting three flags at a time = 5P
3

Number of signals by hoisting four flags at a time = 5P
4

Number of signals by hoisting five flags at a time = 5P
5

 total number of signals formed

= 5P
1 
+ 5P

2 
+ 5P

3 
+ 5P

4 
+ 5P

5

= 5 + 20 + 60 + 120 + 120 = 325.

Result : The number of permutations of n things taken all at a time when p of them

are alike and of one kind, q of them are alike and of second kind, all other being

different is given by 
n

p q .

Example 10 : How many permutations of the letter of word APPLE are there ?

Sol. No. of given letters = 5

No. of P's = 2

 required no. of permutations 
5 5 4 3 2 1

60
2 2 1

   
  



Example 11 : How many numbers greater than 1000000 can be formed by using the

digits 1, 2, 0, 2, 4, 2, 4.

Sol. Given digits are 1, 2,0, 2, 4, 2, 4

 total number of digits = 7

with Number of 2's = 3 and Number of 4's = 2

Number of digits to be taken at a time = 7

 numbers formed = 
7 7 6 5 4 3

420
3 2 3 (1 2)

   
 

  

These numbers also include those numbers which have 0 at the extreme left position.

Numbers having 0 at the extreme left position = 
6 6 5 4 3

60
3 2 3 (1 2)

  
 

  

 required number of numbers = 420 – 60 = 360.

1.2.4.1 Circular Permutations

Find the number of ways in which n persons can be arranged at a round table.

Proof : When n persons are sitting around a circular table, then there is no first and
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last person. Let us fix the position of one person. The remaining (n–1) persons can be

arranged in the remaining (n–1) places in n–1P
n–1

 i.e., n 1  ways.

 required number of ways = n 1 .

Clockwise and Anti-clockwise Permutations

The total number of circular permutations can be divided into two types :

(i) Clockwise (ii) Anti-clockwise.

In two such arrangements each person has the same neighbour though in the reverse

order and either of these arrangements can be obtained from the other by just over-

turning the circle. If in this case, no distinction is made between clockwise and anti-

clockwise arrangements then the two such arrangements are considered as only

one distinct arrangement.

Hence the number of circular permutations in such cases 
1

n 1
2

 

Note. Questions on necklaces with beads if different colours are to be tackled, by the

above formula, as in this case also there is no difference between clockwise and

anticlockwise arrangements.

Example 12 : In how many ways can 8 girls be seated at a round table provided Parveen

and Vipul are not to sit together ?

Sol. Total number of girls = 8.

 number of ways in which they can be arranged on a round table

8 1 7 7 6 5 4 3 2 1 5040          

Consider two girls Parveen and Vipul as one. Therefore 7girls can be arranged in

7 1 6   ways. Also the two girls can be arranged among themselves in 2  ways.

 number of arrangements in which two particular girls are always

together

   6 2 6 5 4 3 2 1 2 1 1440          

 required number of arrangements = 5040 – 1440 = 3600.

1.2.5 Combination

Def : It is a group (or selection) that can be made by taking some or all of a number of

given things at a time. It is denoted by nC
r 
which means number of combinations of n

different things taken 'r' at a time. Further,
n

r

n
C

r n r



.

Illustration : Consider three letters a,b, c. The groups of there 3 letters taken two at
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a time are ab, bc, ca. As far as group is concerned ac or ca is the same group because

in a group, we are concerned with the number of things contained unlike with the

case of arrangement where we have to consider the order of things also.

Note : (i) nC
r 
= nC

n–r

(ii) nC
r 
+ nC

r–1 
= n+1C

r

(iii) The total number of combinations of n different things by taking

some or all at a time i.e. nC
1 
+ nC

2 
+ nC

3 
+ .......... + nC

n 
is given by 2n–1.

The above results can be proved very easily and left as an exercise for the reader.

1.2.6 Practical Problems Involving Combinations

Example 13 : A mathematics paper consists of 10 questions divided into two parts I

and II. Each part containing 5 questions. A student is required to attempt 6 questions

in all, taking at least 2 questions from each part. In how many ways can the student

select the questions ?

Sol. Number of questions in part I = 5

Number of question in part II = 5

Part I Part II Total

2 4 6

3 3 6

4 2 6

Number of questions to be attempted = 6

 each selection contains at least 2 from each part

 different possibilities are

(i) 2 from part 1, 4 from part II

(ii) 3 from part 1, 3 from part II

(iii) 4 from part 1, 2 part II

 required number of ways

5 5 5 5 5 5

2 4 3 3 4 2C C C C C C     

5 5 5 5 5 5

2 1 2 2 1 2C C C C C C     

5 4 5 5 4 5 4 5 5 4

1 2 1 1 2 1 2 1 1 2

   
     

   

= 10×5 + 10 × 10 + 5 × 10 = 50 + 100 + 50 = 200.

Example 14 : A committee of 5 is to be selected from among 6 boys and 5 girls.

Determine the number of ways of selecting the committee if it is to consist of at least

1 boy and 1 girl.

Sol. Number of boys = 6, Number of girls = 5
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Boys=6 Girls=5

1 4

2 3

3 2

4 1

Committee is to be formed of 5.

 committee is to include at least 1 boy and 1 girl

 different possibilities are

(i) 1 boys, 4 girls (ii) 2 boys, 3 girls

(iii) 3 boys, 2 girls (iv) 4 boys, 1 girl

 required number of ways

= 6C
1 
× 5C

4 
+ 6C

2 
× 5C

3 
+ 6C

3 
× 5C

2 
+ 6C

4 
× 5C

1

= 6C
1 
× 5C

1 
+ 6C

2 
× 5C

2 
+ 6C

3 
× 5C

2 
+ 6C

2 
× 5C

1

6 5 6 5 5 4 6 5 4 5 4 6 5 5

1 1 1 2 1 2 1 2 3 1 2 1 2 1

     
       

     

= 30 + 150 + 200 + 75 = 455.

Example 15 : The number of diagonals of a polygon is 20. Find the number of its

sides.

Sol. Let number of sides of polygon = n,  Number of points = n

Number of lines formed 
n

2

n (n 1)
C

2


 

 number of diagonals 
n (n 1)

n
2


 

From given condition, 
n (n 1)

n 20
2


 

 n2 – n – 2n = 40  n2 – 3n – 40 = 0

 (n–8) (n + 5) = 0  n = 8, – 5

Rejecting n = –5 as number of sides cannot be negative, we get, n = 8

 number of sides = 8.

Example 16 : Ram has 5 friends. In how many ways can be invite one or one of them

to a party ?

Sol. Number of friends = 5

Ram can invite one friend, two friends, three friends, four friends, four friends

or five friends.
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 required number of ways = 5C
1 
+ 5C

2 
+ 5C

3 
+ 5C

4 
+ 5C

5

= 5C
1 
+ 5C

2 
+ 5C

2 
+ 5C

1 
+ 5C

0

5 5 4 5 4 5
1

1 1 2 1 2 1

 
    

 

= 5 + 10 + 10 + 5 + 1 = 31.

1.2.7 Theory of Probability

The word "proable" means "likell", or "most likely to be true". In other words, we have

an uncertain situation, where we cannot predict in advance what is going to happen.

The probability theory provides a mathematical model to study the uncertain

situations. Consider the following simple examples. Suppose, we toss a coin on the

floor. Then, either a head or a tail may show up. We cannot predict in advance whether

a head or a tail will show up. Consider now a die. A die is a cube which has six faces.

Let these faces be numbered as 1,2,3,4, 5 and 6. If the die is thrown, then any one of

the six faces can turn up. Again, we cannot predict in advance which number is

going to turn up. Consider a pack of 52 playing cards. Assume that we have shuffled

the pack of cards and a card is drawn. Again, we are not sure which card it will be.

Now, we define certain terms related to probability.

Random Experiment :

Random means "haphazard". Any experiment happening under uncertain situations

or conditions is called a random trial or a random experiment. It is also known as called

an experiment of chance. The three examples which we have described earlier viz. -

result of tossing a coin, result of throwing a dice, result of drawing a card from a pack

of 52 playing cards - are random events or random experiments. In all these

experiments, there are more than one possible outcomes, but we are not sure which

one of these outcomes will actually occur. Thus, the theory of probability may be

defined as that branch of mathematics where we investigate and discuss various

rules for random experiements.

Event :

Any question that we ask with regard to a random experiment defines an event.

Elementary Events :

Suppose that we have conducted a random experiment. It is completely defined when

we know all the possible outcomes. Each outcome of this experiment is called an

elementary event. Suppose that a dice is thrown. The appearance of any number i (i

= 1,2,34,5,6) is an elementary event and there are six elementary events in this

experiment. If a coin is tossed, then either a head (H) or a tail (T) may turn up.

Therefore, head or tail are the two elementary events of the experiment of tossing a

coin.
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Sample Space :

Sample space of a random experiment is the set of all the possible outcomes, that is,

the set of all elementary events of that experiment. We assume that this set is finite.

Let E denote the random experiment and e
1
, e

2
,.....e

m
 denote all the possible out-

comes. Then, the simple space S of the experiment is the set S = (e
1
, e

2
,.....e

m
).

Obviously, each element of the set is a possible outcome and each outcome of a trial

corresponds to only one element of the set S.

Consider the following random experiments :

1. A coin is tossed. There are two possible outcomes, either a head (H) or a tail (T)

may turn up. Hence, the sample space of the experiment contains two

elementary events H, T and therefore, S = (H,T).

2. Consider the random experiment of throwing a dice and noting the resulting

number. The experiment can result in turning up of any one of the six numbers

1,2,3,4,5,6, which are the elementary events of the experiment. Hence, the

sample space of the experiment is S = {1,2,3,45,6}.

3. Let two coins be thrown simultaneously. Then, the first coin may show up

either H or T and the second coin may also show up either H or T. Denote by

HT, the case of a head turning up on the first coin and a tail turning up on the

second coin. Similarly, we define HH, TH and TT. The possible outcomes of the

experiment are HH, HT, TH and TT, which are the elementary events of the

experiment. Hence, the sample space is S = {HH, HT, TH, TT}.

Sure Event (Universal event) :

The sample space S of an experiment is the set of all possible outcomes. Since, a set

is also a subset of itself, S can also be considered as representing an event associated

with the experiment. Now, since every outcome belongs to S, the event represented

by the set S always occurs. Therefore, the event represented by S is called a sure

event.

Impossible event :

An empty set is always a subset of a set S. Hence, the empty set can always be

considered as representing an event of an experiment. But, there is no outcome of

the experiment which can belong to . Hence, the event represented by is called an

impossible event.

Consider again, the example of throwing two dice simultaeously. Let an event B be

defined as "the sum of the numbers on the faces is greater than or equal to 2". Since,

the sum of the smallest numbers of the two faces is 2, the sum of the two numbers

appearing on the two faces is always greater than or equal to 2. Hence, the set of

outcomes is same as the sample space S. Therefore, the event B is a sure event.

Define another event A as "the sum of the numbers is greater than 12". Since, the
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sum of the largest numbers of the two faces is 12, the sum of the two numbers appearing

on the two faces can never be greater than 12, Hence, the set of outcomes of the

event A is . Therefore, A is an impossible event.

Equally likely events

Let S be the sample space of a random experiment. If all the elementary events of S

have the same chance of occuring, then the events are said to be equally likely

events.

Mutually exclusive events

Consider the example of throwing two dice simultaneously, and the sum of the two

numbers is noted. Define the events A and B as

A : the sum of the two numbers appearing on the dice is less than or equal to 4.

B : the sum of the two numbers appearing on the dice is greater than 9.

The set E
1
 of outcomes of the event A is E

1 
= {2, 3, 4}. The set E

2 
of outcomes of the

event B is E
2 
= {10, 11, 12}. The sample space of the experiment is

S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

We find that E
1 
E

2
= and hence, the sets E

1
,
 
E

2 
are disjoint. We then say that the

event A and B are mutually exclusive. That is, when one event has occured, the

other event cannot occur or the two events cannot occur together. If the events

associated with an experiment are mutually exclusive, then the subsets of the sample

space representing the events are disjoint. The converse is also true. That is, if the

subsets representing the events of an experiment are disjoint, then the events are

said to be mutually exclusive.

Mutually exhaustive events (Definition) :

Let S be the sample space of a random experiment and A
1
, A

2
,......A

m
 be the events

defined on the sample space. If A
1 
A

2 
... A

m
= S, then the events are said to be

exhaustive. If further A
1  
A

j
= i  j, then the events are said to be mutually exclusive

and exhaustive.

Combination of events

We now consider combination of events defined in an experiment. This can be done

by using the operations "or", "and", "not". Let us first consider an example. Consider

the experiment of throwing two dice simultaneously and noting the total of the numbers

that have turned up. Define the events

A : the sum of the two numbers is less than or equal to 5,

B : the sum of the numbers satisfy, 4 < sum < 8,

C : the sum of the numbers satisfy, 5 < sum < 8.

Let E
1
, E

2 
and E

3 
denote the sets of outcomes of the events A, B and C respectively.

Now, E
1 
= {2,3,4,5}, E

2
= {4,5,6,7,8}, E

3 
= {6,7}, while the sample space is S = {2,3,....12}.

We define the event A or B as the event which occurs when either A or B or both
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occur. In set notation, we denote this operation as AB. The set representing AB in

the above example is E = E
1 
E

2
 = {2,3,4,5,6,7,8}.

We define a new event A and B, as the event which occurs when A and B both occur.

In set notation, we denote this operation by A B. In the above example, the set

representing A B is E = E
1
 E

2
 = {4,5}.

We define the event not A, as the event which occurs when A does not occur. If E
1
 is

the set representing the event A, then the set representing not A contains all elements

of the sample space S which do not belong to E
1
. Thus, not A is represented by the

complement in S of the set E
1
, which can be written as  or 

1
. Often, not A is also

called the complementary event of A, or the negation of A.

Suppose that E
2
, E

3 
are the subsets of a sample space and we have E

3 
E

2
. The subsets

E
2 
and E

3 
represent the outcomes of the events B and C respectively. We define the

event C B as "the event C implies the event B" or if the event C occurs, then the

event B must occur.

We also define an event A - B as "the event A but not B".

Probability of an Event :

To every event in a random experiment we attach a numerical value which is called

its probability. We denote the probabilities of the events A and B by P(A) and P(B)

respectively. We say that P(A) > P(B), if the event A is more likely to occur, than the

event B. Obviously, every event is more likely to occur than the impossible event ad

is less likely to occur than the sure event. Hence, the impossible event must have

the smallest probability and the sure event must have the largest probability. By

convention, we assign the value 0 to the probability of the impossible event and the

value 1 to the probability of the sure event. Hence, the probability of an event A

satisfies the inequality.

0 < P(A) < 1.

This result is an axiom of calculus of probability.

We now need a rule to compute the value of the probability of an event.

Let the sample space S contain n elementary events e
i
, that is

S = {e
1
, e

2
, e

3
,......e

n
}.

By definition, P(e
i
) > 0, i = 1,2,......,n. Assume now, that all the elementary events are

equally likely to occur when the experiment is performed.

Let the set of outcomes E represent an event A. If the experiment produces an outcome

which belongs to E, then the event A is said to have occured. Let n and m, (m < n) be

the number of elementary events in the sample space S and E respectively. Since, all

the elementary events are equally likely to occur, we define the probability of the

event A as
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P(A) = p = 

Example 1. What is the chance that a leap year selected at random will contain 53

Sundays. (B.C.A. 2011)

Sol. Leap year contains 366 days.

 there are 52 complete weeks and two days other. The following are the possibilities

for these two 'over' days :

(i) Sunday and Monday (ii) Monday and Tuesday

(iii) Tuesday and Wednesday (iv) Wednesday and Thursday

(v) Thursday and Friday (vi) Friday and Saturday

(vii) Saturday and Sunday.

Now there will be 53 Sundays in a leap year when one of the two over days is a

Sunday.

 out of 7 possibilities, two are favourable to this event.

 required probability = .

Example 2. Two cards are drawn at random from a well-shuffled pack of 52 cards.

Show that the chances of drawing two aces is .

Sol. Total number of cards = 52.

Two cards out of 52 cards can be drawn in 52C
2
 ways.

 total number of outcomes = 52C
2 
=  = 1326.

Now 2 aces out of 4 aces can be drawn in 4C
2
 ways.

 total number of favourable outcomes = 4C
2 
=  = 6.

 required probability =  =  .

Art-1. Addition Theorem for Mutually Exclusive Events

If A and B are two mutually exclusive events associated with a random experiment,

then

P(A or B) = P (A) + P (B)

Proof : Let n be the total number of exhaustive, equally likely cases of the experiment.

Let m
1
 ad m

2
 be the number of cases favourable to the happening of the events A and

B respectively.

 P(A) = , P(B) = .

Since the events A and B mutually exclusive.

 there cannot be any sample point common to both events A and B.

 the event A or B can happen in exactly m
1
 + m

2
 ways.

 P(A or B) =   = + = P(A) + P(B)
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 P(A or B) = P(A) + P(B)

Note : The result of this theorem can be extended to any number of mutually exclusive

events.

Art-2. If A and B are two events associated with a random experiment, then

P(A B) = P(A) + P(B) - P(A B)

Proof : Let n be the total number of exhaustive, equally likely cases of the experiment.

Let m
1
 and m

2
 be the number of cases favourable to the happening of the

events A and B respectively.

 P(A) = , P(B) = .

Let m
3
 be the number of sample points common to both A and B.

 P(A B) = .

Now m
3
 sample points, which are common to both the events A and B, are

included in the events A and B separately.

 total number of sample points in the event A B = m
1
 + m

2
 - m

3

 P(A B) =  =  = P(A) + P(B) - P(A B)

 P(A B) = P(A) + P(B) - P(A B)

Cor. If A and B are mutually exclusive events,

then A B = 
 P (A B) = 0

 P (A B) = P(A) + P(B)

Now, the students can easily prove that :

(a) P( ) = 1 - P(A)

(b) P(  B) = P(B) - P(AB)

(c) P(A  P(A) - P(AB)

(d) P (A B C) = P(A) + P(B) + P(C) - P(AB) - P (BC) - P(CA) + P(ABC)

Example 3. Find the probability of 4 turning for at least once in two tosses of a fair

die.

Sol. Here S = {(1,1), (1,2),.....(6,5), (6,6)}

Let two events A and B be

A : 4 on first die

B : 4 on second die

 A = {(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)}

B = {(1,4), (2,4), (3,4), (4,4), (5,4), (6,4)}

A B = {(4,4)}

 P(A) = , P(B) =  , P(AB) = 

P (4 at least on one die) = P(A B) = P(A) + P(B) - P(AB)

= .
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Independent Events

Two events E and F defined on the sample space S of a random experiment are

said to be independent if

P(E and F) = P(E) P(F)

Two events E and F are said to be dependent if they are not independent

i.e. if P(E F) P(E) P(F)

Example 4. A die is thrown and 6 possible outcomes are assumed to be equally likely.

If E is the event : "the number appearing is a multiple of 3" and F the event : "the

number appearing is even". Show that E and F are independent events.

Sol. P(E) = P({3,6}) =  = 

P(F) = P({2,4,6}) =  = 

P (E F) = P({6}) = 

Now  = 

 P (E F) = P(E). P(F)

Multiplication Theorem on Probability

If E and F are two events associated with a random experiment, then

P(E F) = P(E) P(F|E), provided P(E)  0.

or P(E F) = P(F) P(E|F), provided P(F)  0.

Example 5. A bag contains 5 white, 7 red and 4 black balls. If four balls are drawn one

by one with replacement, what is the probability that none is white?

Sol. Number of white balls = 5

Number of black balls = 7

 total number of balls = 5+7+4=16

P(all four balls as none-white) = 

Example 6. A husband and wife appear in an interview for two vacancies in the same

post. The probability of husband's selection is  and that of wife's selection is . What

is the probability that

(i) both of them will be selected?  (ii) only one of them will be selected?

(iii) none of them will be selected?

1.2.8 Pigeonhole Principle

Simple Form : If n pigeons are assigned to m pigeonholes and m < n, then there is at

least one pigeonhole that contains two or more pigeons.

Proof : Label n pigeons with the numbers 1 to n and m pigeonholes with the numbers

1 to m. Starting with pigeon 1 and pigeonhole 1, assign each pigeon in order to the
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pigeonhole with the same number. So we can assign as many pigeons as possible to

distinct pigeonholes. Since the number m of pigeonholes is less than the number n

of the pigeons, so n – m pigeons are left that are not assigned to a pigeonhole.

Therefore, there is atleast one pigeonhole that will be assigned one or more than one

pigeon again.

 there is at least one pigeonhole that contains two or more pigeons.

Extended Form : If n pigeons are assigned m pigeonholes, where n is sufficiently

large as compared to m, then one of the pigeonholes must contain at least

n 1
1

m

    
pigeons.

Proof : Assume that the result is false

 each pigeonhole does not contain more than 
n 1

m

 
  

 pigeon.

 maximum possible number of pigeons 
n 1 n 1

m . m
m m

     

= n – 1

This contradicts the given result that number of pigeons is n.

 our supposition is wrong.

Hence the result.

Example 7 : Use Pigeonhole Principle to show that if seven numbers from 1 to 12 are

chosen, then two of them will add upto 13.

Sol. The sets which add upto 13 are

{1, 12}, {2, 11}, {3, 10}, {4, 9}, {5, 8}, {6, 7}.

By Pigeonhole principle, if we have to choose seven numbers then we must take at

least two numbers belonging to one set. Thus two of the seven numbers will definitely

add upto 13.

Example 8 : Use Pigeonhole Prinicple to prove that an injective mapping cannot

exist between a finite set A and a finite set B if Cardinality of A is greater than

Cardinality of B.

Sol. Let n (A) = a, n(B) = b where a > b.

Consider elements of Set B as pigeonholes and elements of set A as pigeons.

As no. of pigeons are more than pigeon holes so at least two pigeons will have same

pigeonholes or we can say  x, y A such that f (x) = f(y), but x y.

 f : A B is not injective.
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Example 9 : How many people among 200000 people are born at same time (hour,

minute, seconds) ? Use Pigeonhole principle to find it.

Sol. Total number of persons = 200000

Total number of seconds in a day = 24 × 60 × 60 = 86,400

Here, we have to assign a time to each person

So person are like pigeons, time is like pigeonhole.

Number of pigeons (n) = 200000

Number of pigenholes (m) = 86,400

Min. number of persons having same birthday

n 1 200000 1 1,99,999
1 1 1 2 1 3

m 86400 86400

                        
.

1.2.9 Self Check Exercise

1. Prove that 
 n2 1.3.5..........(2n 1)

C (2n, n)
n




2. In how many different ways, the letters of the word ALGEBRA can be

arranged in a row if two A's are never together ?

3. Find the number of different 8 letter words formed from the letters of

word TRIANGLE if each word is to have both consonants and vowels

together.

4. In how many ways 4 boys and 4 girls be seated at a round table provided

each boy is to be between two girls ?

5. A group consists of 4 girls and 7 boys. In how many ways can a team of 5

numbers be selected if the team has (i) no girls ? (ii) atleast one boy and

one girl ?

6. There are 15 points in a plane 1 no three of which are in the same

straight line excepting 4, which are collinear. Find the no. of (i) straight

lines (ii) triangles, formed by joining them.

7. A sport team of 11 students is to be constituted, choosing atleast 5 from

class XI and atleast 5 from class XII. If there are 20 students in each of

these classes, in how many ways can the team be constituted.

8. How many people must you have to guarantee that atleast 12 of them

will have birthdays on the same day of the week ? Use pigeonhole

principle.

9. Use pigeonhole principle to show that if seven numbers from 1 to 12 are

chosen, then two of them will add upto 13.
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SEMESTER-V DISCRETE MATHEMATICS-I

LESSON NO. 1.3 Author : Dr. Chanchal

RELATIONS AND FUNCTIONS

Structure :

1.3.1 Introduction

1.3.2 Types of Relation

1.3.3 Composition of Relations

1.3.4 Closures of Relations

1.3.5 Equivalence Class

1.3.6 Representing Relations

1.3.7 Introduction to Functions

1.3.8 One-One and Onto-Functions

1.3.9 Types of Functions

1.3.10Composition of Functions

1.3.11Invertible Function

1.3.12Floor and Ceiling Functions

1.3.13Self Check Exercise

1.3.1 Introduction

As we have already studied about the cartesian product of two sets in set theory,

discussed in Lesson No. 1. In continuation to that, we can define a relation as :

Def. Relation : A relation from a set A to a set B is defined as a subset of A × B.

Therefore each subset of A × B is a relation from A to B. If R is a relation from a set

A to set B and if (a, b) R for some a A and b B, then we say that a is related to

b and we write it as a R b. If (a, b) R then we say that a is not related to b and we

write it as a R  b.

Domain and Range of a Relation

If R is a relation from a set A to a set B. Then the set of the first components of the

elements of R is called the domain of R and the set of the second components of the

elements of R is called the range of R.

36
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Thus, domain of R = { a : (a, b) R}, and range of R = {b : (a, b) R}.

If R is a relation from a set A to the set A, then R is called a relation on A. Thus a

relation on a set A is defined as any subset of A × A.

For Example : For any a, b N, the set of natural numbers, define a relation R by a

R b if a divides b.

Then, R = { (1, 1), (1, 2), (1, 3), ......, (2, 2), (2, 4),.......(3, 3), (3, 6),........}

R is clearly a subset of N × N and hence a relation on N.

Here, (1, 2) R since 1 divides 2 but (2, 1) R since 2 does not divide 1.

1.3.2 Types of Relation

I. Reflexive Relation

Def. : A relation R on a set A is called a reflexive relation if (x, x) R for all x A i.e.,

if x R x for every x A.

For Example : Let A = {1, 2}.

Then A × A = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Let R = {(1, 1), (2, 2), (1, 2)}.

Clearly R A × A and so R is a relation on the set A.

Since (x, x) R x A, so R is a reflexive relation on A.

II. Symmetric Relation

Def. : A relation R on a set A is called a symmetric relation if a R b b R a where a,

b A i.e., if (a, b) R (b, a) R where a, b A.

For Example : Let A = {1, 2, 3}

Then A × A = { (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3,), (3, 2), (3, 3)}

Let R = {(1, 1), (1, 3), (3, 1)}

Clearly, R A × A and therefore, R is a relation on A.

Since (x, y) R (y, x) R, therefore R is a symmetric relation on A.

III. Transitive Relation

Def. : A relation R on a set A is called a transitive relation if

aRb, b R c a R c a, b, c, R,

i.e, if (a, b) R and (b, c) R (a, c) R where a, b, c A.

For Example : For a, b  N, the set of natural numbers, define a R b if

2a + b=10.

The natural numbers a and b satisfying the relation 2a + b = 0 are given by :

a = 1, b = 8 a = 2, b = 6; a = 3, b = 4; a = 4, b = 2

 R = {(1, 8), (2, 6), (3, 4), (4, 2)}

Since (3, 4) R and (4, 2) R but (3, 2) R. Therefore R is not a transitive relation.

IV. Anti-Symmetric Relation

Def. : A relation R on a set A is called an anti-symmetric relation if a R b and b R a

implies that a = b.
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i.e., if (a, b) R and (b, a) R a = b.

Note : Identity relation on a set is symmetric as well as anti-symmetric.

For Example : For a, b N, the set of natural numbers, define a R b if a b.

Let a, b N such that a R b and b R a.

 a b and b a.  a = b.

 R is an anti-symmetric relation.

V. Equivalence Relation

Def. : A relation R on a set A is called an equivalence relation if R is reflexive,

symmetric and transitive.

For Example : Let X be the set of all triangles in a plane.

For any two triangles 
1 
and 

2 
in X define 

1 
R 

2 
, if 

1 
and 

2 
are congruent triangles.

Then

(i) R is Reflexive: Since each triangle is congruent to itself, so R for each  in X.

(ii) R is Symmetric : Let 
1 
and 

2 
X such that 

1 
R 

2 
. Then 

2 
and 

1 
are congruent

triangles. Hence 
2 
R 

1
.

(iii) R is Transitive : Let 
1
, 

2 
, 

3 
X such that 

1 
R 

2 
and 

2 
R 

3
, i.e., 

1
, 

2 
are

congruent triangles and so are 
2 

and 
3
. This implies that the 

1 
and 

3 
are also

congruent triangles. Hence 
1 
R 

3
.

So, R is reflexive, symmetric and transitive.

Therefore, R is an equivalence relation on X.

VI. Partial-Order Relation : A relation R on a set A is called partial order

relation if it is reflexive, anti-symmetric and transitive.

For Example : For a, b N, the relationR defined by a R b if a b, is partial-order

relation.

VII. Some other Relations on a Set

Def. Void Relation :  Since is a subset of A × A, therefore the null set is also a

relation in A, called the void relation in a set A.

Universal relation in a set: Let A be any set and R be the set A × A. Then R is

called the universal relation in A.

Identity relation in a set : Let A be any set. Then the relation R defined by

R = {(a, a) : for all a A} is called identity relation in A. It is usually denoted by I
A
.

Compatible Relation. A relation R in A is said to be compatible relation if it is

reflexive and symmetric.

VIII. Inverse of a Relation

The inverse of a relation R, denoted by R–1, is obtained from R by interchanging the

first and second components of each ordered pair of R.

Therefore, R–1 = { (a, b) : (b, a) R}.
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If R is a relation from a set A to set B, then R–1 is relation from the set B to the set A.

 Domain of R–1 = Range of R and Range of R–1 = Domain of R.

For Example : Let A = {1, 2, 3} and Let R = { (1, 2), (1, 3), (2, 3), (3, 2)}.

Then R is a relation on the set A, since R A × A.

 R–1 = { (2, 1), (3, 1), (3, 2), (2, 3)}.

Example 1 : Give an example of a relation which is reflexive but neither symmetric

nor transitive.

Sol. Let A = {2, 3, 4}.

Then A × A = { (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}

Let R = {(2, 2), (3, 3), (4, 4), (2, 3), (4, 3), (3, 4)}

Since R  A × A, therefore R is a relation on A.

R is reflexive since (a, a) R a A.

R is not symmetric since (2, 3) R but (3, 2) R.

R is not transitive since (2, 3) and (3, 4) R but (2, 4) R.

Further R is not anti-symmetric since (3, 4) and (4, 3) R but 3 4.

Example 2 : Give an example of a relation which is symmetric but neither reflexive

nor transitive.

Sol. Let A = {1, 2}.

Then A × A = { (1, 1), (1, 2), (2, 1), (2, 2)}.

Let R = { (1, 2), (2, 1)}.

Then R A × A and hence R is a relation on the set A.

R is symmetric since (a, b) R (b, a) R.

R is not reflexive since 1 A but (1, 1) A.

R is not transitive since (1, 2) R, (2, 1) R but (1, 1) R

R is not anti-symmetric since (1, 2) R and (2, 1) R but 1 2.

Example 3 : The relation R N × N is defined by (a, b) R if and only if 5 divides

b – a. Show that R is an equivalence relation.

Sol. The relation R N × N is defined by (a, b) R if and only if 5 divides b – a.

This means that R is a relation on N defined by, if a, b N then (a, b) R if and only

if 5 divides b – a.

Let a, b, c belongs to N. Then

(i) a – a = 0 = 5 . 0.

 5 divides a – a.

 (a, a) R. R is reflexive.

(ii) Let (a, b) R.

 5 divides a – b.
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 a – b = 5 n for some n N.  b – a = 5 (–n).

 5 divides b – a  (b, a) R.

 R is symmetric.

(iii) Let (a, b) and (b, c) R.

 5 divides a – b and b – c both

 a – b = 5n
1 
and b – nc = 5 n

2
for some n

1 
and n

2 
N

 (a – b) + (b – c) = 5n
1 
+ 5n

2
a – c = 5 (n

1 
+ n

2
)

 5 divides a – c

 (a, c) R

 R is transitive relation in N.

Example 4 : Prove that the intersection of two equivalence relations on a non-empty

set is again an equivalence relation on that set.

Sol. Suppose that R
1 
and R

2 
are two equivalence relations on a non-empty set X.

First we prove that R
1 

R
2 
is an equivalence relation on X.

(i) R
1 

R
2 
is reflexive :

Let a X arbitrarily.

Then (a, a) R
1 
and (a, a) R

2
, since R

1 
, R

2 
both being equivalence relations

are reflexive.

So, (a, a) R
1 

R
2

 R
1 

R
2 
is reflexive.

(ii) R
1 

R
2 
is symmetric :

Let a, b X such that (a, b) R
1 

R
2

 (a, b) R
1

and (a, b) R
2

 (b, a) R
1

and (b, a)  R
2
, since R

1 
and R

2 
being equivalence relations

are also symmetric.

(b, a) R
1 

R
2

(a, b) R
1 

R
2 
implies that (b, a) R

1 
R

2
.

 R
1 

R
2 
is a symmetric relation.

(iii) R
1 

R
2 
is transitive :

Let a, b, c X such that (a, b) R
1 

R
2 
and (b, c) R

1 
R

2
.

(a, b) R
1 

R
2

 (a, b) R
1 
and (a, b) R

2
... (i)

(b, c) R
1 

R
2

 (b, c) R
1 
and (b, c) R

2
... (ii)

(i) and (ii)  (a, b) and (b, c) R
1

 (a, c) R
1
, since R

1 
being an equivalence relation is also trasnsitive.

Similarly, (a, c) R
2
.

 (a, c) R
1 

R
2

So, R
1 

R
2 
in transitive.

Thus R
1 

R
2 
is reflexive, symmetric and also transitive. Thus R

1 
R

2 
is an equivalence

relation.
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Example 5 : If R is an equivalence relation on a set A, then so is R–1

Sol. Let a, b, c A. Then

(i) (a, a) R, since R being equivalence relation is also a symmetric relation

 (a, a) R–1  R–1 is reflexive

(ii) Let (a, b) R–1  (b, a) R

 (a, b) R, since R is symmetric

 (b, a) R–1

 (a, b) R–1  (b, a) R–1.

So, R–1 is also symmetric

(iii) Let (a, b) and (b, c) R–1

 (b, a), (c, b) R.

 (c, b), (b, a) R.

 (c, a) R, since R is transitive.

 (a, c) R–1

 R–1 is also transitive.

 R–1 is an equivalence relation.

1.3.3 Composition of Relations

Def. : Let A, B and C be sets and let R be a relation from A to B and let S be a relation

from B to C. That is, R is a subset of A × B and S is a subset of B × C. Then, R and S

give rise to a relation from A to C denotes by RoS and defined by

a(RoS) c if for some b B we have aRb and bSc

That is RoS = {(a, c) : there exists b B for which (a, b) R and (b, c) S}

The relation RoS is called the composition of R and S ; it is sometimes denoted

simply by RS, RoR is denoted by R2, R3 = RoRoR.

For Example : Let R and S defined on A be

R = {(1, 1), (3, 1), (3, 4), (4, 2), (4, 3)}

S = {(1, 3), (2, 1), (3, 1), (3, 2), (4, 4)}

Now, RoS = }(1, 3), (3, 3), (3, 4), (4, 1), (4, 2)}

R3 = {(1, 1), (3, 1), (3, 4), (4, 1), (4, 2)}.

1.3.4 Closures of a Relation

Let R be a relation in a set A. R may not satisfy particular property like reflexivity,

symmetry or transitivity. The new relation, obtained after adding least number of

new pairs so that R satisfies particular property, is called closure of R. The types of

closures are discussed below :

Reflexive Closure : Let R be a relation on A. A reflexive closure of R is the smallest

reflexive relation that contains R.

Symmetric Closure : Let R be a relation on A which is not symmetric.

 there exists (a, b) R but (b, a) R
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Now (b, a) R–1

 to make R symmetric, we add all pairs of R–1.

 R R–1 is symmetric closure of R.

If R is a relation on A which is not symmetric. Then R R–1 is symmetric closure of

R.

Transitive Closure : Let A be a set and R be a relation on A. The transitive closure

of R, denoted by R+, is the smallest relation which contains R as a subset and which

is transitive.

Another Definition : Let A be a set and R be a relation on A. The relation

R+ = R R2 R3 ......... in A is called the transitive closure of R in A.

Example 6 : Let R be a relation on a set A = {1, 2, 3} defined by R = {(1, 1), (1, 2),

(2, 3)}. Find the reflexive closure of R and symmetric closure of R.

Sol. A = {1, 2, 3}

R = {(1, 1), (1, 2), (2, 3)}

R–1 = { (1, 1), (2, 1), (3, 2)}

R R–1 = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}

Reflexive closure of R is {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}

Symmetric closure of R is R R–1 = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}.

Example 7 : Let R be a relation on set A = {1, 2, 3, 4} defined by

R = {(1, 2), (2, 3), (3, 4), (2, 1)}. Find transitive closure of R.

Sol. A = {1, 2, 3, 4}

R = {(1, 2), (2, 3), (3, 4), (2, 1)}



0 1 0 0

1 0 1 0
M where m is matrix of R

0 0 0 1

0 0 0 0

 
 
 
 
 
 

2

0 1 0 0 0 1 0 0 1 0 1 0

1 0 1 0 1 0 1 0 0 1 0 1
M

0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

     
     
      
     
     
     

3 2

1 0 1 0 0 1 0 0 0 1 0 0

0 1 0 1 1 0 1 0 1 0 1 0
M M M

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

     
     
       
     
     
     

, where M is matrix of R.
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4

0 1 0 1 0 1 0 0 0 1 0 0

1 0 1 0 1 0 1 0 0 1 0 1
M

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

     
     
      
     
     
     

 4 2 3 4

1 1 1 1

1 1 1 1
M M M M M

0 0 0 1

0 0 0 0

 
 
     
 
 
 

 R+ = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)}

which is transitive closure of R.

1.3.5 Equivalence Class

Consider, an equivalence relation R on a set A. The equivalence class of an element

a A, is the set of elements of A to which element a is related. It is denoted by [a].

For Example : Let A = {4, 5, 6, 7} and R = {(4, 4), (5, 5), (6, 6), (7, 7), (4, 6), (6, 4)} be

an equivalence relation on A.

Now, equivalence classes are as follows :

[4] = [6] = {4, 6}

[5] = {5}

[7] = {7}

Results : (i) Suppose that R is an equivalence relation on a set X,

Then (I) a [a] a X.

(II) a [b] iff [a] = [b] a, b X

(III) [a] = [b] or [a] [b] = a, b X, i.e. any two equivalence classes are

either disjoint or identical. Proof : Try Yourself.

(ii) The distinct equivalence classes of an equivalence relation on a set

form a partition of that set.

1.3.6 Representing Relations

In order to represent a relation, there are numerous ways such as matrix

representation, graphical representation, arrow diagram, diagraph or directed graph

and Hasse diagram. All these may be clearly understood from the following examples:

Example 8 : If A = {1, 2, 3, 4} and B = {x, y, z}. Let R be the following relation from A to

B : R = (1, y), (1, z), (3, y), (4, x), (4, z).

(a) Determine the matrix of the relation

+
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(b) Draw the arrow diagram of R

Sol. (a) From the fig. 1 Observe that rows of the matrix are labeled by the

elements of A and the columns by the elements of B. Also observe that entry in the

matrix corresponding to a  A and b B is 1 if a is related to b and 0 otherwise.

x y z

1 0 1 1

2 0 0 0

3 0 1 0

4 1 0 1

Fig. 1

(b) From fig. 2, Observe that there is an arrow from a A to b B iff a is related

to b i.e. iff (a, b) R.

Fig. 2

Example 9 : If A = {1, 2, 3, 4}, consider the following relation in A

R = {(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)}

(a) Draw its directed graph.

(b) Is R (i) reflexive, (ii) symmetric (iii) transitive or (iv) antisymmetric

(c) R2 = RoR

Before giving the solution, we define the directed graph or cligraph as :- Draw a
small circle for each elemet of A. These circles are called vertices. Draw an arrow,
called a edge, from vertex a

i
 to vertex aj iff ai Raj. The resulting pictorial

representation of R is called a directed graph or digraph.
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Sol. (a) 

(b) (i) R is not  reflexive 3 A but 3 R  3 i.e. (3, 3) R.

(ii) R is not symmetric because 4 R 2 but 2 R  4

i.e. (4, 2) R but (2, 4) R.

(iii) R is not transitive because 4 R 2 and 2 R 3 but 4 R 3 i.e. (4, 2) R and

(2, 3) R but (4, 3) R.

(iv) R is not anti-symmetric because 2 R 3 and 3 R 2 but 2 3.

(c) For each pair (a, b) R, find all (b, c) R since (a, c) R2

R2 = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3), (4, 4)}.

Example 10 : Let A = {1, 2, 3} and B = {a, b}. Represent A × B graphically.

What is |A × B| ?

Sol. A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

Graphically A × B is shown below :

(|A × B| represents the order of A × B i.e. No. of elements in A × B).

|A × B| = |A| . |B| = 3.2 = 6.

Now, we define Hasse diagram as :

Def. : The Hasse diagram of a partially ordered relation. R defined on a set X is a

directed graph whose vertices are the elements of X and there is an undirected
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edge from a to b whenever (a, b) R (Instead of drawing an arrow from a to b, we some

times place b higher than a and draw a line between them). An arrow from a vertex to

itself is drawn whenever (a, a) R.

For Example : Let B = {2, 3, 4, 6, 12, 36, 48} and S be the relation/"divide" on B.

Then, Hasse diagram of S is

1.3.7 Introduction to Functions

Firstly, we define a function as :

Def. Function : Let X and Y be two non-empty sets. A subset f of X × Y is called a

function from X to Y if for each x  X, there exists a unique y  Y such that

(x, y) f or f (x) = y. It may also be defined as a rule f which associates each element

of X with a unique element of Y. It is denoted by f : X Y or fX Y . Here, the set

X is called the domain of f and is written as D
f 
= X. The set Y is called co-domain of f.

If an element y Y is associated with an element x of X under the rule f, then y is

called the image of x under the rule f, denoted by f(x). The set consisting of images

of all the elements of X under f is called Image set or Range of f and is written as R
f
.

Mathematically, R
f 
= {y : y = f (x) where x X} = f(X) clearly, f (X) Y.

Remarks : (i) Functions are also called mappings or transformations.

(ii) To every x X, a unique y Y such that y = f (x). The unique element

y Y is also called the value of f at x and is denoted by f (x).

(iii) Different elements of X may be associated with the same element of Y.

(iv) There may be elements of Y which are not associated with any element

of X.

For Example : (i) The rule shown in the figure 4.7 is not a function as each element

of X is not asociated. Here 5 X has no image in Y.
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Fig. 4.7

(ii) The rule shown in the figure 4.8 is not a function as I X is associated with more

than one element namely a and b of Y.

Fig. 4.8

(iii) The rule shown in the figure 4.9 is a function as each element of X is associated

with a unique element of Y.

Fig. 4.9

1.3.8 One-One and Onto Functions

Def. One-One function or Injective function : A function f from X to Y is said to be

one-one (abbreviated 1-1) iff

x
1 

 x
2 

f(x
1
)  f (x

2
) x

1
, x

2 
X, or equivalently

f (x
1
) = f(x

2
) x

1 
= x

2 
x

1
, x

2 
X.

In other words, if different elements of X under the rule f have different images in Y,
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then f is called one-one function. A function which is not 1-1 is called many-one

function.

For Example :

Fig. 4.10

Def. Onto function or Surjective Function :

Def. A function from f from X to Y is called onto iff every element of Y is an image of

at least one element of X. Otherwise f is called an into mapping.

Note. In the case of onto function, R
f 
= Y, while in the case of into function R

f 
is a

proper subset of Y.

For Example : (i) The function f depicted in the below diagram is one-one and onto

function.

Fig. 4.11

(ii) Let X = {1, 2, 3, 4, 5, 6}, Y = {2} (It is onto but not one-one)

Fig. 4.12
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Def. Bijective function : A function which is one-one and onto is called bijective

function. It is also called one-one correspondence.

For Example : The function shown in fig. 4.11 is a bijective function.

1.3.9 Types of Functions

There are various types of functions as discussed below :

I. Real valued function on real variables

Let X, Y be two non-empty subsets of real numbers. Then, every function f from X

to Y is called a real valued function on real variables.

II. Equal functions

Two real valued functions f and g are said to be equal iff D
f 
= D

g 
and

f (x) = g (x)  x D
f
. We write it as f = g.

III. Constant Function

A function f : X Y is called a constant function if f (x) = k for every x X and Here

k Y is fixed.

Function shown in figure 4.12 is a constant function.

IV. Identity Mapping

Let I
x 
: X X be defined by, I

x 
(x) = x  x X.

Then I
x 
is called the identity mapping on X.

V. Inverse Mapping

Let f : X  Y be a one-one onto mapping. Then the mapping f–1 : Y  X which

associates to each element y Y, the unique element x X such that f (x) = y is

called the inverse map of f.

1.3.10 Composition of Functions

Def. : Let f be a function with domain X and range in Y and let g be a function with

domain Y and range in Z. The function with domain X and range in Z which maps an

element x X, into g (f(x)), is called the composite of the functions f and g and is

written as g of.

For Example : Let X = {1, 3, 5}, Y = {3, 9, 15, 21}, Z = {2, 8, 14, 20}
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Let f be a function from X to Y and g be a function from Y to Z such that

f = {(1, 3), (3, 9), (5, 15)}, g = {(3, 2), (9, 8), (15, 14), (21, 20)}

then, gof = {(1, 2), (3, 8), (5, 14)}.

Note : (i) gof is defined only when R
f 
D

g
.

(ii) It is possible that one of fog and gof may be defined while the other may not

be defined.

(iii) gof and fog both may be defined but may not be equal.

(iv) Let f, g, h be three functions and be a real number, then

(a) (fog) oh = fo (goh) (Associative Law)

(b) fo (g+h) = fog + foh (Distributive Law)

(c) (f) og = . (fog) (Scalar multiplication)

Art 1 : If f : A  B and g : B  C are both one-one and onto maps i.e. bijective maps,

then gof is also bijective map.

Proof : Since f : A  B and g : B  C are maps, therefore gof is also a map from A to C.

Let x
1
, x

2 
A such that

One–One : (gof) (x)
1 
= (gof) x

2

 g(f(x
1
)) = g (f (x

2
))

 f (x
1
) = f(x

2
), since g is one-one

 x
1 
= x

2 
since f is one-one

 gof is a one-one map

Onto : Since f, g are onto

Let c C be any element, then b B such that

g (b) = c  g is onto

Again for this b B, some a A such that

f (a) = b (f is onto)

 gof (a) = g (f(a)) = g(b) = c

Thus for c C, a A such that gof (a) = c

Hence gof : A  C is onto.

Art 2 : If f : A  B and g : B  C are two maps such that gof : A  C is both one-one and

onto map, then f is one-one and g is onto.

Proof : Since f : A  B, g : B  C are maps

 gof : A  C is a map. Also gof is given to be one-one map.

f is one-one : If possible, suppose that f is not one-one and g is one-one.

 x
1
, x

2 
A such that x

1 
x

2 
but f (x

1
) = f(x

2
).

But f (x
2
) = f (x

2
) g (f (x

1
)) = g (f (x

2
)) [g is supposed to be one-one]

 gof (x
1
) = gof (x

2
)
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 x
1
, x

2 
A such that x

1 
x

2
, but (gof) (x

1
) = (gof) (x

2
)

 gof is not one-one, which is against the given hypothesis that gof is one-one.

Thus our supposition is wrong and f is one-one but g is not one-one.

We, now give an example to illustrate that if gof is one-one, then g may not be

one-one.

Let A = {1, 2}, B = {4, 5, 6}, C = {7, 8, 9, 10}

Let f = {(1, 4), (2, 6)} and g = {(4, 7), (5, 8), (6, 8)}

then f and g are functions from A to B and from B to C respectively.

Have R
f 
= {5, 6} D

g 
= {4, 5, 6}

 R
f 
D

g

 gof is defined and D
gof 

= D
f 
= A = {1, 2}

gof (1) = g (f(1)) = g(4) = 7 and gof (2) = g (f(2)) = g (6) = 8

 gof = {(1, 7), (1, 8)}

Here, gof is one-one map since different elements of A have different image

But g is not one-one since g (5) = g (6) = 8, but 5 6.

Since f : A  B and g : B  C are maps, so gof is a map from A to C. We are given

that gof : A  C is onto. We now prove that g is onto

Let z C.

g is onto : Since gof : A  C is onto, so x A such that gof (x) = z

 g (f (x)) = z g (y) = z where y = f (x)

Since x A and f is map from A to B

Therefore f (x) B y B

for given z C, we have determined y B such that g (y) = z

 g : B  C is onto

Now, we show by an example that if gof is onto, then f may not be onto

Let A = {1, 2}, B = {4, 5, 6}, C = {7}

Let f = {(1, 4), (2, 6)} and g = {(4, 7), (5, 7), (6, 7)}

Then f is a function from A to B and g is a function from B to C

 gof is a function from A to C such that gof = {(1, 7), (2, 7)}

Here, g is onto. But f is not onto since 5 belonging to B has no pre-image in A

under the map f but g : B  C is onto.

1.3.11 Invertible Function

Def. : A function f defined from X to Y is said to be invertible if three exists a

function g from Y to X such that gof = I
X 
and fog = I

Y
, where I

X 
is an identity mapping

on X and I
Y 
is an identity mapping on Y.

Note : f and g are called inverse of each other.

Art 3 : Let f : X  Y. Then fo I
x 
= f = I

Y 
of.

Proof : Let x be any element of X and let f (x) = y, y Y



52B.A. PART-III MATHEMATICS : PAPER-III (OPT.I)

Since f : X  Y and I
Y 
: Y  Y

 I
X 
of : X  Y

Now (I
Y 
of) (x) = I

Y 
(f(x)) = I

Y 
(y) = y = f(x) x X

 I
Y 
of = f

Again I
X 
: X  X and f : X   Y

 fo I
X 
 : X  Y

Now (fo I
X
) (x) = f (I

X 
(X)) = f(x) x X

 fo I
X 
= f.

Art 4 : If f : X  Y is invertible, then its inverse is unique.

Proof : Let g : Y  X and h : Y  X be two inverse functions of f : X  Y

 fog = I
Y
, gof = I

X
 and foh = I

Y
, hof = I

X

Now g(y) = g (I
Y
(y)) = g {(foh) (y)} = g {f(h (y))}

= (gof) (h(y)) = I
X 
(h(y))

 g(y) = h (y) h (y) X g (y) = h (y) y Y

 g = h

 inverse of function f is unique.

Note. (1) Inverse of f, if it exists is denoted by f–1.

(2) f–1 of = I
X 
and f of–1 = I

Y 
where f : X  Y is an invertible function.

Art 5 : A function f : X  Y is invertible iff f is one-one and onto.

Proof. (i) Assume that f : X  Y is invertible

 a function g : Y  X such that fog = I
Y 
and gof =I

X

We will prove that f is one-one and onto.

To prove that f is one-one

Let x
1 
, x

2 
X and f(x

1
) = f(x

2
)

 g (f(x
1
)) = g (f(x

2
))  (gof) (x

1
) = (gof) (x

2
)

 I
X 
 (x

1
) = I

X 
(x

2
)  x

1 
= x

2

 f(x
1
) = f (x

2
)  x

1 
= x

2 
x

1
, x

2 
X

 f is one-one.

To prove f is onto

To each y Y, there exists x X such that g (y) = x.

 f (g(y)) = f(x)  (fog) (y) = f(x)

 I
Y  

(y) = f(x)  y = f(x)

 f is onto.

(ii) Assume that f : X  Y is one-one and onto. We have to show that f is

invertible.

Since f is one-one and onto

 to each y Y, there exists one and only one x X such that f (x) = y.

 we can define a function g : Y  X such that g (y) = x iff f (x) = y
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Now (gof) (x) = g (f (x)) = g(y) = x, x X

 gof = I
x

Again (fog) (y) = f(g (y)) = f(x) = y, y Y

 fog = I
y

 f is invertible.

Art 6 : If a function f : X  Y be one-one and onto then, f–1 is also one-one and onto.

Proof :  f : X  Y is one-one and onto

 f–1 : Y  X exists and f–1 of = I
X
, fof–1 = I

Y

To prove f–1 is one-one

Let y
1 

Y, y
2 

Y.

Now f–1 (y
1
) = f–1 (y

2
)

 f (f–1 (y
1
)) = f (f–1 (y

2
))

 (fof–1) (y
1
) = (fof–1) (y

2
)

 I
Y 
(y

1
) = I

Y 
(y

2
)  y

1
 = y

2

 f–1 (y
1
) = f–1 (y

2
)  y

1 
= y

2 
y

1
, y

2 
Y

 f–1 is one-one.

To prove f–1 is onto

To each x X, there exists y Y such that y = f(x)

 f–1 (y) = f–1 (f(x))  f–1 (y) = (f–1 of) (x)

 f–1 (y) = I
X 
(x)  f–1 (y) = x

 f–1 is onto

Cor. Since, f–1 is invertible and its inverse is f.

 (f–1)–1 = f.

Art 7 : Let f : X  Y and g : Y  Z and let f, g be one-one onto. Then gof : X  Z is also

one-one onto and (gof)–1 = f–1 og–1.

Proof : Do Yourself.

1.3.12 Floor and Ceiling Functions

For any real number x, the floor function of x means the greatest integer which is

less than or equal to x.

It is denoted by [x].

For Example : [2.58] = 2, [–4.4] = 5, [2] = 2

For any real number x, the ceiling function of x means the least integer which is

greater than or equal to x. It is denoted by [x].

For Example : [2.58] = 3, [–4.4] = –4, [2] = 2.

For any real number x, the integer function of x converts x into an integer by deleting

the fractional part of x. It is denoted by INT (x).

For Example : INT (2.44) = 2, INT (–4.44) = –4.

Note : (i) If x is an integer, then [x] = [x]. Otherwise [x] + 1 = [x]
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(ii) [x] =n n x < n + 1 and [x] = n n–1 < x n

(iii) INT (x) = [x] if x is positive and INT (x) = [x] if x is negative.

Some Important Examples

Example 11 : Let a function f : R  R be defined by f (x) = 2x + 3 x R. Prove that f

is one-one and onto.

Sol. Let x
1
, x

2 
R such that f (x

1
) = f(x

2
)

 2x
1 
+ 3 = 2x

2 
+ 3 x

1 
= x

2

 f is one-one map

Let y R. Let y = f (x
0
)

Then 2x
0 
+ 3 = y  0

y 3
x

2




Since
0

y 3
y R, so R i.e., x R

2


  

0 0

y 3
f(x ) 2 x 2 2 3 y

2


    

Therefore for each y R, there exists x
0 

R such that f(x
0
) = y.

 f is onto.

Example 12 : If 
1

f(x) ,
1 x




then what is f [f {f(x)}] ?

Sol. Here 
1

f(x)
1 x





1 1 1 x 1 x

f {f(x)}
11 f(x) 1 x 1 x

1
1 x

 
   

   




1
1

1 f(x) 1 x 1 x1 xf [f {f(x)}]
1f(x) 1 1

1 x

      
  


 f [f {f(x)}] = x.

Example 13 : Let f and g be two functions from IR R defined by f (x) = x2 + 3x + 2 and

g (x) = 4x – 1. Find fog and gof. Also calculate (gof) (–1) and fog (–1). Is composition

commutative or not ?
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Sol. gof is a map from A to C defined by  gof (x) = g (f (x)) x A.

Here, f : R  R is defined by f (x) = x2 + 3x + 2, x R,

and g : R  R is defined by g (x) = 4x – 1, x R

 fog : R  R is defined by

fog (x) = f (g (x)) = f (4x + 1) = (4x – 1)2 + 3 (4x – 1) + 2

= 16x2 – 8x + 1 + 12x – 3 + 2

i.e., (fog) x = 16x2 + 4x. ... (1)

gof : R  R is defined by

gof = g (f(x)) = g (x2 + 3x + 2) = 4 (x2 + 3x + 2) – 1

= 4x2 + 12x + 8 –1

gof (x) = 4x2 + 12x + 7 ... (2)

By (1), (fog) (–1) = 16 (–1)2 + 4 (–1) = 16 – 4 = 12

By (2), (gof) (–1) = 4 (–1)2 +| 12 (–1) + 7 = –1

 fog (–1) gof (–1).

Hence composition of maps is not commutative.

Example 14 : Is 
x 1

f(x)
x 1





invertible in its domain ? If so, find f–1. Further verify that

(fof–1) (x) = x.

Sol.  Here 
x 1

f(x)
x 1






D
f 
= set of all reals except – 1

R
f 
= set of all reals except 1

Let x
1
, x

2 
D

f 
and f (x

1
) = f (x

2
)


21

1 2 2 1 1 2 2 1

1 2

x 1x 1
x x x x 1 x x x x 1

x 1 x 1


        

 

 2x
1 
= 2x

2
 x

1 
= x

2

 f (x
1
) = f (x

2
)  x

1 
= x

2

 f (x) is 1 – 1 in D
f
.

 f f

1 y
y R x D where y 1

1 y


     


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1 y 1 y 1 y
1

1 y 2y1 y 1 y
s.t. f(x) f y

1 y 1 y 1 y1 y 2
1

1 y 1 y

   


   
           

 

 the mapping fis onto

 f is both 1–1 and onto f–1 exists

Now to find f–1 , Let 
x 1

y f(x)
x 1


 



 xy + y = x –1  x – x y = y + 1


1 y

x(1 y) 1 y x
1 y


    

 .


1 11 y 1 x

f (y) f (x)
1 y 1 x

  
  

 

and 1f
D    Set of all reals except 1

Verification : 

1
1 1

1

1 x 1 x 1 x
1

f (x) 1 2x1 x 1 x(fof ) (x) f (f (x)) x
1 x 1 x 1 x 2f (x) 1 1
1 x 1 x


 



   
       

    
 

(fof–1) (x) = x.

Example 15 : Prove that function f: C  R, defined by f (z) = |z| is neither one-one nor

onto.

Sol. Here, f : C  R defined by f (z) = |z|

Let z
1 
= 2 + 3 i, z

2 
= 2 – 3i  z

1 
z

2

1 1f(z ) |z | 4 9 13    2 2[z x iy,|z| x y ]   

2 2f(z ) |z | 4 9 13   

Here f (z
1
) = f (z

2
). But z

1 
z

2
.

so, f is not one-one.

Onto : again let – 3 R.

But there does not exist any complex number such that f (z) = –3.

So, f is not onto.
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Example 16 : Let X = Y = Z = R and let f : X Y and g : Y  Z are such that

f (x) = 2x + 1 and g (y) = y/3. Verify that (gof)–1 = f–1og–1.

Sol. Here f : X  Y is defined by f (x) = 2x + 1 and g : Y  Z is defined by 
y

g(y)
3



L.H.S. : 
2x 1

gof(x) g(f(x)) g(2x 1)
3


   

Now we find (gof)–1, Let gof (x) = y

then, 
2x 1 y 1

y x
3 2

  
  


1 13y 1 3x 1

(gof ) y or (gof ) x
2 2

  
 

R.H.S. : f (x) = 2x + 1


y 1

y 2x 1 x
2


   


1 1y 1 x 1

f (y) or f (x)
2 2

  
 

Again,
y y

g(y) x y 3x
3 3

    

 g–1 (x) = 3x or g–1 (y) = 3y

Now
1 1 1 1 1 3x 1

f og (x) f (g (x)) f (3x)
2

     
  

so (gof)–1 = f–1 og–1.

Example 17: Let f and g be functions from R to R defined by f (x) = [x] and g(x) = |x|.

Determine whether fog = gof.

Sol. Given f (x) = [x] and g(x) = |x|

fog (x) = f [g (x)] = f (|x|) = [|x|]

gof (x) = g [f(x)] = g ([x]) = |[x]|

Now fog  gof.

As fog (–3.2) = f[g (–3.2)] = f (3.2) = 3

gof (–3.2) = g [f (–3.2)] = g (–4) = 4.
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1.3.13 Self Check Exercise

1. In N × N, show that the relation defined by (a, b) R (c, d) if ad = bc is an

equivalence relation.

2. Show that  R
1 

 R
2 
may not be an equivalence relation on a set X if R

1
, R

2

are equivalence relations on X.

3. How many relations are possible from a set A of m elements of another

set B of n elements ? Why ?

4. Let R and S be the relations on X = {a, b, c} defined by

R = {a, b), (a, c), (b, a)}, S = {(a, c), (b, a), (b, b), (c, a)}

(i) Find M
R 
and M

S
(ii) Find RoS (iii) Find SoR

5. Let A = {1, 2, 3, 4} and relation on it R = {(a, b) : | a – b| = 2}. Find

transitive closure of R.

6. Let X = {1, 2, 3, 4} and R = {(x, y) : x > y}. Draw the diagraph and matrix of R.

7. R is a relation on set of positive integers s.t. R = {(a, b) : a – b is an odd

integer}. Is R an equivalence relation ?

8. Prove that a function f : IR  R, defined by f (x) = x3 is one-one onto.

9. Is function f : IR  R defined by 
1

f(x)
x

  is bijective in its domain.

10. If f(x) = x2 – 1, g (x) = 3x + 1, then describe the following functions :

(i) gof (ii) fog (iii) gog (iv) fof

11. If y = f(x) = 
x 2

,
x 1




 then show that x = f(y).

12. Let f : IR  R and g : IR  IR be real valued functions defined by

f (x) = 2x3 – 1, x R and 

1

31
g(x) (x 1) , x

2

     
IR . Show that f and g are

bijective and each is inverse of other.

13. Give an example of a map which is

(i) one-one but not onto (ii) onto but not one-one.

Suggested Readings :

1. Dr. Babu Ram, Discrete Mathematics

2. C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill,

International Edition, Computer Science Series, 1986.

3. Discrete Mathematics, S. Series.

4. Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw Hill

Fifth Ed. 2003.
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SEMESTER-V DISCRETE MATHEMATICS-I

LESSON NO. 2.1 Author : Dr. Chanchal

GRAPH THEORY–I

Structure :

I. Objectives

II. Introduction

III. Types of Graphs

IV. Graphs Isomorphism and Sub-Graphs

I. Objectives

The prime objective of this unit is to define and discuss various components of

graph theory along with suitable examples.

II. Introduction

Graph theory is employed in many areas of computer science such as switching

theory, logical design, artificial intelligence, formal languages, computer graphics

etc. On account of diversity of its application, it is useful to develop and study the

subject in abstract form and then import its results. Firstly, we may define a graph

as

Def. Graph : A graph (or undirected graph) is a diagram consisting of a collection of

vertices together with edges joining certain pair of these vertices. Mathematically,

we can write a graph G as G = [V(G), E(G)] where V(G) and E(G) are sets defined as

V(G) is the vertex set of the graph G, and E(G)   V(G) × V(G), a relation on V(G),

called edge set of G. Each element e of E(G) is assigned an unordered pair of vertices

(a, b), where a and b are end vertices of e.

A graph G (or undirected graph) consists of a finite set V of objects called vertices, a

finite set E of objects called edges ad a functio Y, that assigns to each edge a subset

{v, w} where v and w are vertices (and may be the same). Mathematically, we can

write, G=(V,E,Y) or simply G=(V,E). If e is a edge and Y(e)={v,w}, then e is an edge

between v and w and that e is determined by v and w. Moreover, v and w are called

the end points of 'e'.

e.g. :- Let V = {1,2,3,4} and E={e
1
, e

2
, e

3
, e

4
, e

5
)

59
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Let Y be defined by Y(e
1
) = Y(e

5
) = {1,2}

Y(e
2
) = {4,3}, Y(e

3
) = {1,3}, Y(e

4
) = {2,4}

Then, (G,E,Y) is a graph.

In the pictorial representation of a graph, the connections are the most important

information and generally, a no. of different pictures may represent the same graph.

e.g.

Note : It does not matter whether the joining of the two vertices in a graph is a

straight line or a curve, longer or shorter.

Def. Directed Graph : It may be defined as a graph in which each element 'e' of

E(G) is assigned an ordered pair of vertices (a, b) along with arrow starting from 'a'

to 'b', where 'a' is called initial vertex and 'b' is called terminal vertex of the edge e.

The graphs directed and undirected are shown in the following figures.

Fig. 5.1

Def. Adjacent Vertices : Two vertices u and v of a graph G = (V, E) are said to be

adjacent if there is an edge e = (u, v) convecting u and v.

For Example : In the above diagram, a and b are adjacent vertices since there is an

edge e
1 
= (a, b) joining a and b while the vertices a and d are not adjacent.

Def. Loop : An edge that is incident from and into itself is called a loop or self loop

or sting.

For Example : In the above diagram, e
1 
= (b, b) is a self loop since it is incident from

b onto itself.

2

34

e
2

e
4

1

e
1

e
5

e
3

1 2 3 41 2

34
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Def. Isolated Vertex : A vertex of a graph G = (V, E), which is not the end vertex of any

edge in G, is called an isolated vertex. In the above diagram, x is an isolated vertex.

Def. Parallel Edges : If two (or more) edges of a graph G have the some end vertices,

then these edges are called parallel edges. In the above diagram, e
3 
= (b, d) and e

6 
=

(b, d) are parallel edges.

Def. Adjacent Edges : Two non-parallel edges of a graph G are called adjacent if

they are incident on a common vertex.

For Example : The edges e
1 

= (a, b) and e
4 

= (a, c) are adjacent as they have a

common end vertex 'a'.

Note : It may be noticed that the joining of two vertices in a graph G may be a

straight line or a curve, longer or shorter.

III. Types of Graphs

There are various types of Graphs, which are discussed below :

I. Simple Graph : It is a graph which has neither self loop nor parallel

edge, as shown below.

Fig. 5.2

II. General Graph (or Multi Graph) : It is a graph which has either self

loop or parallel edge or both, as shown below

Fig. 5.3

III. Complete Graph : It may be defined as a simple graph in which there
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exists an edge between every pair of vertices. It is also called universal

graph and a complete graph with n vertices is usually denoted by k
n
.

For Example :

Fig. 5.4

IV. Weighted Graph : Let G = (V, E) be any graph and w : E  R be a

function from edge set E to the set of real numbers R. Then, the graph

G = (V,E,w) in which each edge is assigned a number called the weight

of the edge, is known as weighted graph.

For Example :

Fig. 5.5

V. Finite and Infinite Graphs : A graph G = (V,E) is called a finite graph

if its vertex set V is a finite set otherwise if its vertex set V is an infinite

set, it is called an infinite graph.

For Example :

Fig. 5.6

Note :
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(i) The no. of vertices denoted by |V(G)| is called order of graph G.

(ii) A graph with one vertex and no edges is called trivial graph.

(iii) A graph with no vertices and no edges is called a null or empty graph.

VI. Regular Graph : In order to define a regular graph, we first discuss

about the degree of a graph G as :

Def. In-degree : In a directed graph G, the in-degree of a vertex 'a' is defined as the

number of edges which have 'a' as the terminal vertex. It is denoted by degG+(a) or

d+(a).

Def. Out-degree : In a directed graph G, the out-degre of a vertex 'a' is defined as

the number of edges which have 'a' as the initial vertex. It is denoted by degG–(a) or

d–(a).

Def. Degree : The degree of a vertex 'a' in a directed or undirected graph is defined

as the total number of edges incident with a. It is denoted by deg G(a) or d(a).

Therefore in a directed graph, deg G(a) = deg G+(a) + degG–(a).

Remark : A loop contributes two to the degree of a vertexm, since that vertex

serves as both end points of the loop.

For Example : In the following directed or undirected graph, we have

Fig. 5.7

In directed graph In undirected graph

deg G(x) = deg G+(x) + deg G–(x)

 deg G (a) = 2 + 2 = 4 deg G(a) = 4

deg G (b) = 1 + 2 = 3 deg G(b) = 3

deg G (c) = 2 + 3 = 5 deg G(c) = 5

deg G (d) = 3 + 1 = 4 deg G (d) = 4

Now, we can define a regular graph as :

A graph in which all the vertices are of same degree, is called a regular graph.
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Moreover, if all the vertices have same degree equal to k, then if is called a k-regular

graph.

For Example :

Fig. 5.8

Note :

(i) A vertex in a directed graph with in-degree zero is called a source and

out-degree zero is called a sink.

(ii) The direction of a loop in a directed graph has no significance.

(iii) In a graph G, the vertex v is said to be of even or odd parity according

as deg. (v) is even or odd.

(iv) A vertex whose degree in a graph is one, is called pendent vertex.

(v) A vertex whose degree is zero, is d called an isolated vertex.

(vi) A complete graph K
n
 with n vertices is n-1 regular graph.

For Example :

Fig. 5.9

Here a and c are pendent vertices, while d is a isolated vertex.

IV. Graphs Isomorphism and Sub-Graphs

Let G = (V, E) and G' = (V', E') be two graphs. Then, G is isomorphic to G' written as

G G' if there exists a bijection f, from v onto v' such that (v
i
, v

j
) E, iff (f(v

i
), f(v

j
)) 

E'. We can say, two graphs are isomorphic if there exists a one-one correspondence

between their vertices and edges such that incidence relationship is preserved.
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For Example :

Fig. 5.10

Here, G G'  since   a mapping f f 1

i i i iu v and e e   for i = 1, 2, 3, 4, 5.

Remarks :

(i) Two isomorphic graphs must have : (a) same number of vertices, (b)

same number of edges, and (c) an equal number of vertices with given

degrees.

(ii) The converse of remark (i) is not true i.e. the two graphs may be non-

isomorphic even though they have the same number of vertices and

edges and an equal number of vertices of given degrees.

For Example :

Fig. 5.11

Here G G' since in G' there is only one pendent vertex v
2 
adjacent to v

1
, while in G

there are two pendent vertices u
2 
and u

3 
adjacent to u

1
.

Def. Sub-Graph : Let G and H be two graphs with vertex sets V(H), V(G) and edge

sets E(H) and E(G) respecitvely such that V(H) V(G) and E(H) E(G), then H is

known as subgraph of G (or G as supergraph of H).

If V(H) V (G), E(H) E(G), then H is a proper subgraph of G and if V(H) = V(G) and

E(H)   E(G), then H is called a spanning subgraph of G. In simple words, H is a

subgraph of G if all the vertices and all the edges of H are in G, and each edge of H

has the same end vertices in H as in G.
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For Example : In the following example, H is a subgraph of G.

Fig. 5.12

Dif. G–v : G–v is a subgraph of G obtained by deleting the vertex v from vertex set

V(G) and deleting all the edges from edge set E(G) which are incident on v.

For Example : Let G be the graph find G–A, G–B, G–C

Fig. 5.13

Now, G–A, G-B and G–C may be represented as

Fig. 5.14

Def. G–e : Let e be an edge in G. Then, G–e is the subgraph of G obtained by

deleting the edge e from the edge set of G.

For Example : Let G be a graph.
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Fig. 5.15

Now, following subgrahs may be obtained from it :

Fig. 5.16

Note : Every graph is its own subgraph.
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SEMESTER-V DISCRETE MATHEMATICS-I

LESSON NO. 2.2 Author : Dr. Chanchal

GRAPH THEORY–II

I. Operations of Graphs

II. Some Important Theorems

III. Some Important Examples

IV. Matrix Representation of Graphs

IV. Self Check Exercise

I. Operations of Graphs

The following operations may be defined on graphs :

I. Union of two graphs : Let G
1 
= (V(G

1
), E(G

1
)) and G

2 
= (V(G

2
), E(G

2
)) be two

graphs. Then, their union denoted by G
1
G

2 
is a graph G

1 
G

2 
= (V(G

1
G

2
), E(G

1
G

2
))

such that V(G
1
G

2
) = V(G

1
) V(G

2
) and E(G

1
G

2
) = E(G) E(G

2
).

For example :

Fig. 5.17

II. Intersection of two graphs : Let G
1 
= (V(G

1
), E(G

1
)) and G

2
 = (V(G

2
), E(G

2
))

be two graphs. Then, their intersection denoted by G
1 
G

2 
is a graph G

1 
G

2 
=

(V(G
1
G

2
), E(G

1
G

2
)) such that V(G

1
G

2
) = V(G

1
) V(G

2
) and E(G

1 
G

2
) = E(G

1
) 

E(G
2
).

For Example :

Fig. 5.18

68
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III. Complement of a Graph : Let G be any graph. Then complement of G

denoted by G  may be defined as the simple graph with the vertex set same as the

vertex set of G together with the edge set satisfying the property that there is an edge

between two vertices in G , when there is no edge between these vertices in G.

For Example :

Fig. 5.19

Note : If the degree of a vertex v in a simple graph G having n vertices is k. Then,

degree of v in G  is n - k - 1.

II. Some Important Theorems

Theorem 1 : (First Theorem on Graph Theory or Handshaking Theorem) : The

sum of degrees of all the vertices in a graph G is equal to twice the number of edges

in G.

Proof : Let 'e' be the number of edges in G and 'n' be the number of vertices in G.

Let 'k' be any edge between two vertices v
1 
and v

2 
in G. Now, on counting the degree

of all vertices in G, k will be counted twice, once in degree of v
1 
and again in degree

of v
2
. Also, if v

1 
and v

2 
are identical, k will be again counted twice since it is a self

loop. Hence, every edge is counted twice and total degree is twice the number of

edges i.e.

n

i

i 1

deg (v ) 2e




Theorem 2 : Prove that in a graph G, the number of vertices of odd degree in

even.

Proof : Let v
1
, v

2
 .............. v

n 
be n-vertices and e

1
, e

2
, .......... e

e 
be e-edges in G.

Then, by first theorem on graph theory

n

i

i 1

deg (v ) 2e


 ........ (1)

Now, divide the sum on L.H.S. of (1) in two parts such that one part contains the sum
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of degree of vertices with even degree and other part contains the sum of degree of

vertices with odd degree. Therefore, equation (1) may be written as

i i

even odd

deg (v ) deg . (v ) 2e   ........ (2)

Since the R.H.S. of (2) is an even number. Also i

even

deg (v )  is also even. Therefore,

i

odd

deg (v )  or sum of degree of vertices with odd degrees, is also even.

Hence, number of vertices having odd degree mustbe even.

Theorem 3 : Prove that maximum degree of any vertex in a simple graph having

n vertices is n–1.

Proof : Since, in a simple graph, there is no parallel edge and no self loop. Therefore,

a vertex can be connected to the remaining n-1 vertices by at most (n-1) edges.

Hence, maxm degree of any vertex in a simple graph having n vertices is n–1.

Sly, the reader may easily prove that the degree of any vertex in a complete graph

having n vertices is n–1.

Theorem 4 : Prove that the number of edges in a complete graph with n vertices

is 
n(n 1)

2


.

Proof : Since, degree of any vertex in a complete graph with n vertices is n–1. Now,

by first theorem on graph theory we have 
n

i

1 1

deg . (v ) 2e




 n(n–1) = 2e  ideg. (v ) n 1 for i n   


n (n 1)

e
2




Theorem 5 : Show that maxm no. of edges in a simple graph with n vertices is

n(n 1)

2


.

Proof : Do Yourself.

III. Some Important Examples

Example 1 : Prove that there does not exist a graph with 5 vertices with degrees

equal to 1, 3, 4, 43 respectively.

Sol. : Here n = 5, Let e be the number of edges in graph. Now, by first theorem on
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graph theory

n

i

i 1

d (v ) 2e 1 3 4 2 3 2e


      


13

e ,
2

  which is not possible.

Hence, there does not exist a graph with 5 vertices of given degrees.

Example 2 : Is there a simple graph G with six vertices of degree 1, 1, 3, 4, 6, 7 ?

Sol. : Here n = 6 and we know that, maxm degree of any vertex in a simple graph

with n i.e. 6 vertices is n–1 = 6–1 = 5. But G has a vertex of degree 7, which is not

possible in a simple graph.

Hence, there is no simple graph G having six vertices with given degrees.

Example 3 : Find k,
 
if a k-regular graph with 8 vertices have 12 edges. Also, draw

k-regular graph.

Sol. : In a k-regular graph, degree of all the vertices is same and equal to k. Here

n = 8 and e = 12.

 By first theorem on graph theory 
n

i

i 1

d (v ) 2e


 

8

i 1

k 2 (12) 8k 24 k 3


     

Now, the 3-regular graph is

Fig. 5.20

IV. Matrix Representation of Graphs :

A graph can be represented by a matrix in two ways :

(i) Adjacency matrix (ii) Incidence matrix

Adjacency Matrix (for undirected graph) :

Let G be an undirected graph with n vertices. Further suppose G has no multiple

edges. Then G is represented by n × n matrix defined as M = [a
ij
]
n×n
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i j

ij

1 if a and a are adjacent
a

0 otherwise


 


i.e. an entry is 1 if there is an edge between a
i 
and a

j
.

For Example : For the graph

The Adjacency matrix is given by

a b c d
1 1 0 1

a 1 1 0 1
1 0 1 1

and so, Mb 1 0 1 1
0 1 0 1

c 0 1 0 1
1 1 1 0

d 1 1 1 0

 
 
 
 
 
 

Note : Adjacency matrix of undirected graph is always symmetric.

Adjacency matrix of Directed Graph : Let G be diagraph with n vertices

having no multiple edges. Then G can be represented by n × n adjacency matrix m

defined by

i j

ij

1 if there is edge from a to a
a

0 otherwise


 


For Example : The adjacency matrix of following graph is
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a b c d
0 1 0 0

a 0 1 0 0
0 0 1 0

and so, Mb 0 0 1 0
0 0 1 1

c 0 0 1 1
1 1 0 0

d 1 1 0 0

 
 
 
 
 
 

Adjacency matrix of multi-graph (undirected) : Let G be undirected graph

of n vertices that may contain parallel edges. Then adjacency matrix M is n × n

matrix defined by M = [a
ij
]
n×n

where 
i j

ij

n, n is number of edges between a and a
a

0 otherwise


 


For Example : The adjacency matrix of Multi-graph.

is a b c d e
1 2 0 0 1

a 1 2 0 0 1
2 0 1 0 0

b 2 0 1 0 0
and so M 0 1 0 1 3

c 0 1 0 1 3
0 0 1 0 1

d 0 0 1 0 1
1 0 3 1 0

e 1 0 3 1 0

 
 
 
 
 
 
  

Note : In similar way, we can find adjacency matrix of directed multi-graph.

Incidence matrix : Let G be a graph have m vertices and n edges. Then incidence

matrix of graph is m × n matrix written as A(G) = [a
ij
]
n×n 

defined by
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i i

ij

1 if fth edge e is incident on ith vertex v
a

0 otherwise


 


For Example : For the graph

Number of vertices = 5

Number of edges = 7

So incidence matrix is 5 × 7 matrix.

x
1

x
2

x
3

x
4

x
5

x
6

x
7

a 1 1 0 0 0 0 0

b 1 0 1 1 0 0 0

c 0 0 0 1 1 1 0

d 0 0 0 0 0 1 1

e 0 1 1 0 1 0 1

so

1 1 0 0 0 0 0

1 0 1 1 0 0 0

A(G) 0 0 0 1 1 1 0

0 0 0 0 0 1 1

0 1 1 0 1 0 1

 
 
 
 
 
 
  

V. Self Check Exercise

1. How many nodes or vertices are necessary to construct a 2-regular

graph with exactly 6 edges.
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2. Find n, if a complete graph with n vertices has 15 edges.

3. Does there exist a 3-regular graph with nine vertices ?

4. Is it possible to construct a graph with 12 edges such that two of its

vertices have degree 3 and remaining vertices have degree 4.

Suggested Readings :

1. Dr. Babu Ram, Discrete Mathematics

2. C.L. Liu, Elements of Discrete Mathematics (Second Edition), McGraw Hill,

International Edition, Computer Science Series, 1986.

3. Discrete Mathematics, S. Series.

4. Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw Hill

Fifth Ed. 2003.
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SEMESTER-V DISCRETE MATHEMATICS-I

LESSON NO. 2.3 Author : Dr. Chanchal

GRAPH THEORY–III & TREES AND FINITE STATE MACHINES

Structure :

I. Walk, Path and Circuit

II. Planar Graphs

III. Shortest Path Problem

IV. Eular Paths and Circuits

V. Hamiltonian Paths and Circuits

VI. Some Important Examples

VII. Travelling Salesman Problem

VIII. Introduction to Trees

IX. Properties of Trees

X. Tree Searching

XI. Spanning Tree

XII. Suggested Readings

I. Walk, Path and Circuit

A path II  in a grah G consists of a pair  of (V  E) of sequences:- a vertex sequence

V    : V
1
, V

2
,.........., V

k–1
, and an edge sequence E  e

1
, e

2
,.........., e

k–1
, for which (i)

Each success pair V
i
, V

i 
 + 1 of uertices is adjacet i G, and edge ei has 

 
V

i
, V

i 
 + 1

as end point for i=1,2--- k-1.

A Circuit is a path that begins and ends at the same vertex. It is also as cycle of

circular path al polygon

A path is called simple if no vertex appears more than once in the vertex sequence,

except possibly if V
i
, U

k 
(In this case, the Path is called a simple circuit).

K-cycle:- A cycle with k-edges is called a k-cycle and it is denoted by C
k

       Self Loop    2-cycle       3-cycle

1-cycle   K
i 
= e

1
v

2
e

2
v

1
    Triangle

W=v
1
e v

1   
Pair of parallel Edge     v

1
e

1
v

2
e

2
u

3
e

3
U

1

76

e

V
i

e
i

U
i

U
2

e
i

U
i e

3

U
3e

2

a
i

U
i
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Note:- n-cycle is a polygon of n sides.

Def. Length of Path : The number of edges appearing in the sequence of the path

is called the length of the path.

Remark. (i) An edge which is not a self loop is a path of length 1.

    (ii) A self loop can be included in a walk but not in a path.

   (iii) The terminus vertices of a path are of degree 1 and the internal vertices

of the walk are of degree 2.

V
1 
 : A, B, C, D, D,

       : p,r,t,u

A,p,B,r,e,t,D,u,D      Path but not simple

V
2 
 : A, B, A

         : p,q

   : D,E,B,C   Simple Path

    :  t,r,s

Defn:- A graph is called Connected if there is a path from any vertex to any other

vertex in the graph. Otherwise, the graph is disconnected. If the graph is disconected,

the various connected pieces are called the components if the graph.

e.g:- The graph in above Fig. (A) is conected while the graph in Fig. B is disconected.

Moreover, it has two connected components.



p

A

s

C
E

r

t

D
u

q



E
I


E

I

E
I

E
3

2

1

3
4

5

6
Fig. B
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Defn:-Discrete Graph:- A graph denoted by, U   (n>1), with n vertices and no edge is

called a Discrete Graph on n vertices.

e.g.                   . . .   .  .  .  .

                            U
2  

                U
5

Defn Linear Graph:- A graph, deneted by L   (n> 1), with  vertices (u
1,
u

1 
+ 1) for I<I<n,

is called linear Graph on n verticesl

e.g.

L
2

             L
4

Bipartise Graph:- Let G by any graph. if vertex set V ca be partitioned into two

disjoint subsets A and B        Biery edge in G joins a vertex in A and a vertex in B,

the the graph is said to be Bipartise graph.

Complete Bipartise Graph:- A BG is said to be complete if every vertex A is joined

to every vertex is B.

Km, n    m-   No. of vertex in A

   n-    No. of vertex in B

                                                                                                  K
3,3

II. Planar Graphs

A planar graph is a graph drawn in the plane in such a way that no two edges

intersect (cross) each other.

Def. Planar graph : A planar graph is a graph which is isomorphic to a plane

graph i.e., it can be redrawn as a plane graph.

A graph which is not a planar graph is called non-planar graph.

For Example : (i) The complete graph with four vertices K
4 
is usually drawn with

crossing edge see fig (a). But it can also be drawn with non-crossing edges see fig.

(b)

n

n



a b c

d e
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Hence K
4
, is a planar graph.

(ii) A complete graph is five vertices is non-planar i.e., K
5 
is non-planar.

Since the graph shown in fig. (a) cannot be drawn in plane without crossing edges

see fig. (b). Hence K
5 
is non-planar graph.

Region : A plane graph partitions the plane into several regions. These regions

are called faces. Each region is depicted by the set of edges.

Cycle : The boundary of the region R of graph G is cycle if the boundary of R

contains no cut edges of G. i.e., contain no edge such that on removing any edge in

R it will not be a closed circuit.

Degree of face : If G be graph and g be its face, then the number of edges in the

boundary of g with cut edges counting twice is defined as the degree of face g.

Cut Edge : Cut edge in a graph is an edge whose removal results in a disconnected

graph.

For Example : Consider the following plane graph

Various regions are shown by R
1
, R

2
, R

3
, R

4
, R

5
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Here deg (R
1
) = 3, deg (R

2
) = 3, deg (R

3
) = 5, deg (R

4
) = 4, deg (R

5
) = 3

Theorem 1 Euler's Formula

Let G = (V, E) be a connected planar graph and let R be the number of regions

defined by any planar depiction of G. Then R = |E| – |V| + 2

Proof : We prove the result by induction let k be the number of regions determined

by G.

We first show that the result is true for k = 1. A tree determine the above regon, for

example

No. of vertices = 4, No of edges = 3. Also from the formula, we have

1 = |E| – |V| + 2 |E| = |V| – 1

i.e., No. of edges = No. of vertices –1, which is always true for a tree.

 The result is true for k = 1.

Let us assume that the result is true for all k 1. Let G be a connected plane graph

determining (k + 1) regions. Remove an edge which is common to the boundary of

two regions. We obtain a graph G' having k-regions.

Let |V'|, |E'|, R' denote respectively the number of vertices number of edges and

regions of G', then

R' = |E'| – |V'| + 2 ... (1)

Also, we have

|V'| = |V|, |E'| = |E| – 1, R' = R–1

 |E| – |V| + 2 = |E'| + 1 – |V'| + 2 = (|E'| – |V'|+2)+1 = R' + 1 [of (1)]

= R

 results is true for k + 1

 result follows by induction for all connected graphs.

III. Shortest Path Problem

Let G be a connected graph whose edges are assigned unique weights (taken as

distances). We want to determine shortest possible path between a pair of vertices.

Method for this was developed by Dijkstra and is known as Dijkstra's algorithm.
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Dijkstra's Algorithm :

This algorithm maintains a sets of vertices whose shortest path from source is already

known. If there is no path from source vertex do any other vertex then it is

represented by + . All weights must be positive.

Following points are considered :

1. Initially there is no vertex in sets.

2. Include source vertex V
s 
in S. Determine all the paths from V

 s 
to al other

vertices without going through any other vertex.

3. Include that vertex in S which is nearest to V
s 
 find shortest paths to all the

vertices through this vertex, give the values.

4. Repeat the process until (n–1) vertices are not included in S.

Example : Find the shortest path between a and z.

Step I : Include the vertex a in S and determine all the direct paths from a to all

other vertices without going through any other vertices.

Distance to all other vertices

a a b c d e f z

0 2(a) 1(a) 4(a)   

Step II : Include vertex in S, nearer to a and determine shortest path to all the

vertices through this vertex. The nearest vertex is c.

Distance to all other vertices

a, c, a b c d e f z

0 2(a), 1(a) 3(a,c) 6(a,c) 8(a,c) 

Step III : Second nearest vertex is b

Distance to all other vertices

a, c, b a b c d e f z

0 2(a) 1(a) 3(a,c) 5(a,b) 8(a,c) 

Step IV : Next vertex is d.

n
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Distance to all other vertices

a, c, b,d a b c d e f z

0 2(a) 1(a) 3(a,c) 5(a,b) 7(a,c) 

Step V : Next vertex is e.

Distance to all other vertices

a, c, b,d,e a b c d e f z

0 2(a) 1(a) 3(a,c) 5(a,b) 7(a,c) 6(a,b,e)

Step VI : Next vertex is z.

Distance to all other vertices

a, c, b,d,e,z a b c d e f z

0 2(a) 1(a) 3(a,c) 5(a,b) 7(a,c) 6(a,b,e)

n – 1 vertices are included in S.

So minimum path between a and z is 6

Path is a  b  e  z.

IV. Euler Paths and Circuits

Euler Path : A simple path in a graph G is called Euler Path if it traverses every

edge of graph exactly once.

Euler Circuit : Euler Circuit is a circuit in graph G which traverses every edge of

graph exactly once. Euler Circuit is simply a closed Euler path. It is also called

Euler line.

Eulerian Graph : A graph which contain either Euler Path or Euler Circuit is

called Eulerian Graph.

For Example :

Fig. I has Euler Circuit A B C D A

Fig. II has Euler Path A B C D A C

Remark : Circuit starts and ends at same vertex whereas path starts and ends at

different vertices.
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Some Important Results :

Result 1 : A connected graph G is a Euler Graph if all the vertices of G are of even

degree.

Result 2 : If G is a connected graph and every vertex of G has even degree, then

prove that G has a Euler Circuit.

Result 3 : If a graph has Euler Path then it has either no vertex of odd degree or

two vertices of odd degree.

V. Hamiltonian Paths and Circuits

Hamiltonian Path : A Hamiltonian Path in connected graph is a path which

contains each vertex of graph exactly once.

Hamiltonian Circuit : A Hamiltonian circuit is a circuit that contains each

vertex of graph exactly once except for the first vertex, which is also the last.

Hamiltonain Graph : A graph which possesses either Hamiltonian circuit or

Hamiltonian path is called a Hamiltonian graph.

Remarks : I In Hamiltonian circuit or path we have to visit all the vertices. There

may be some unvisited edges.

II. If G has n vertices, then Hamiltonian circuit will contain n edges where as

Hamiltonian Path will contain n – 1 edges.

III. There may be more than one Hamiltonian paths and circuits in a graph.

Some Important Results :

Result I : Let G be a connected simple graph with n vertices, n > 2. Let U and V

are any two non-adjacent vertices in G and deg (U) + deg (V)  n, then G is

Hamiltonian.

Result II : Let G be a connected simple graph with n vertices, n > 2. If deg(V)  
n

2


for every V G then G is Hamiltonian.

Result III : Let m be the number of edges in Graph G. If m 21
(n 3n 2)

2
    where

n is number of vertices of G then G is Hamiltonian.

Hamiltonion Circuit in Complete Graph :

Let K
n 

be complete graph of n vertices, n  3. Then K
n 

will definitely contain a

Hamiltonian circuit. In fact K
n 
will contain 

n 1

2


Hamiltonian circuits.

For Example : Consider the graph K
4
.
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Then by above result, K
4 
contains 

4 1
3

2


 . Hamiltonian circuits which are ABCDA,

ABDCA and ADBCA.

VI. Some Important Examples

Example 1 : Give an example of a connected graph that has

(a) Neither an Euler circuit nor a Hamiltonian circuit.

(b) An Euler circuit but not Hamiltonian circuit.

(c) A Hamiltonian circuit, no Euler circuit.

(d) Both an Hamiltonian circuit and Euler circuit.

Sol. (a) A connected graph that has neither an Euler circuit nor a Hamiltonian

circuit is

(b) A connected graph that has an Euler circuit but not Hamiltonian circuit is
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(c) A connected graph that has a Hamiltonian circuit and no Euler circuit is

(d) A connected graph that has both is Hamiltonian circuit and Euler circuit is

Example 2 : Draw a planar representation of each of the following graphs.

Sol. : The planar representation of the graph (a) and (b) are

The graph (c) is non-planar.
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Example 3 : Determine the number of regions defined by a connected planar graph

with 4 nodes and 8 edges. Draw such a graph.

Sol.  Here |V| = 4, |E| = 89

 By Euler's formula.

R = |E| – |V| + 2 = 8 – 4 + 2 = 6

 The given connected graph has 6 regions.

The required graph is.

Example 4 : Find Hamiltonian paths for each of the following graphs and show

that no Hamiltonian circuit exits.

Sol. The Hamiltonian path for the graph (a) is as shown by the heavy lines.

i.e. W = v
1 
e

1 
v

2 
e

2 
v

3 
e

4 
v

4 
e

5 
v

5

is a Hamiltonian path

clearly the graph has no Hamiltonian circuit (as it has to cross the vertex V
3 
twice)

The Hamiltonian path for the graph (b) is as shown by the heavy line
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i.e. W = v
11 

e
16 

v
10 

e
13 

v
1 
e

1 
v

2 
e

2 
v

3 
e

3 
v

4
e

4 
v

5
e

8 
v

6 
e

10 
v

7 
e

11 
v

8 
e

14 
v

9

is a Hamiltonian path

clearly the graph has no Hamiltonian circuit (as it has to cross the vertex V
8 
or V

9 
or

V
10 

or V
11 

twice).

VII. Travelling Salesman Problem

Suppose a salesman wants to visit a certain number of cities starting from his

headequarters. The distances (or cost or time) of journey between every pair of

cities, denoted by c
ij
, that is, distance from city i to city j is assumed to be known.

The problem is:

Salesman starting from his home city visited each city only once and returns to his

home city in the shortest possible distance (or at the least cost or in the least time).

Given n cities and distance c
ij
, the salesman starts from city 1, then any permutation

of 2, 3,...., n represents the number of possible ways for his tour. So, there are (n–

1)! possible ways for his tour. The problem is to select an optimal route that could

achieve his objective.

The problem may be classified as :

(i) Symmetrical : If the distance between every pair of cities is independent of

the direction of his journey.

(ii) Asymmetrical : For one or more pair of cities the distance changes with the

direction.

Example 5

A machine operator processes five types of items on his machine each week, and

must choose a sequence for them. The set-up cost per change depends on the item

presently on the machine and the set-up to be made according to the following

table.
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If he processes each type of item once and only once each week, how should be

sequence the items on his machine in order to minimise the total set-up cost?

Solution :

Step 1: Reduce the cost matrix using Step 1 and 2 of the Hungarian algorithm and

then make assignments in rows and columns having single zeros as usual.

Step 2: Note that row 2 is not assigned. So, mark to row 2. Since there is a zero in

the 4th column of the marked row, we tick 4th column. Further, there is an

assignment in the first row of 4th column. So, tick first row. Draw lines through

all unmarked rows and marked columns. We can find the number of lines is

4 which is less than the order of the matrix. So, go to next step (see table).
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Step 3: Subtract the lowest element from all the elements not covered by these lines

and add the same with the elements at the intersection of two lines. Then we

get the table as:

The optimum assignment is 14, 21, 35, 42, 53 with minimum cost as Rs.

20.

This assignment schedule does not provide us the solution of the travelling salesman

problem as it gives 14, 42, 21, without passing through 3 and 5.

Next, we try to find the next best solution which satisfies this restriction. The next

minimum (non-zero) element in the cost matrix is 1. So, we bring 1 into the solution.

But the element '1' occurs at two places. We consider all cases separately until we

get an optimal solution.

We start with making an assignment at (2, 3) instead of zero assignment at (2,1).

The resulting assignment schedule is

1  4, 4  2, 2  3, 3  5, 5  1

When an assignment is made at (3, 2) instead of zero assginment at (3, 5), the

resulting assignment schedule is

1  5, 5  3, 3  2, 2  4, 4  1

The total set-up cost in both the cases is 21.

Example 6

Solve the travelling salesman problem given by the following data :

c
12 

= 20, c
13 

= 4, c
14 

= 10, c
23 

= 5, c
34 

= 6

c
25 

= 10, c
35 

= 6, c
45 

= 20 where c
ij 
= c

ji

and there is no route between cities i and j if the value for cij is not shown.

Solution : The cost matrix is :
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Repeating the steps as before using the Hungarian algorithm, the optimum table

obtained is :

The solution is

1  3, 3  4, 4  1, 5  2, 2  5

which is not the solution of the travelling salesman problem as the sequence

obtained is not in the cyclic order.

The next lowest number (other than 0) is 1. Therefore, make an assignment in the

cell (3, 2) having the element 1. Consequently, make an assignment in the cell (5,

4) having element 8, instead of zero element in the cell (5, 2). The assignment Table

is

The shortest path for the travelling salesman is 1>3, 3>2, 2>5, 5>4, 4>1

VIII. Introduction to Trees :

A graph G is called a tree if it is connected and contains no cycles.
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For example : 

a b

d c

is a tree but 

b c

a d

is not a tree as it contains a cycle b,c,d,b.

Note : (1) A tree has to be a simple graph i.e. having neither a self loop nor parallel

edges because both of them form cycles.

(2) A tree is said to be directed if every edge of tree is assigned a direction,

otherwise it is undirected.

Some Basic Terms Used in Trees :

Consider the following tree

d

b

a

c

fe

(i) Node : It is the key component of tree which stores information and

can have one or more links for connecting to other nodes.

(ii) Edge : A directed line from one node to another mode is called edge,

link, arc or branch of a tree.

For example : ab, ac are edges.

(iii) Root : The vertex having indegree zero is called root of tree.

For example : a is the root of above tree.

(iv) Path : A path is a sequence of nodes when we traverse from one node

to other along the edges which connect them.

e.g. : Path from a to f is a, c, f.

(v) Level : Level of node is an integer value that measures the distance of

a node from the root.
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e.g. : Root is at level O, The Child(s) of root are at level 1 and so on.

(vi) Depth : The depth of node is the length of path from node to root of

tree. Root has depth O.

(vii) Rooted Tree : A rooted tree is a directed tree which contains a unique

vertex with in-degree zero and every other vertex has in-degree one.

e.g. : The above tree is a rooted tree with root 'a'.

(viii) Parent and Offspring : If (x, y) is any directed edge, then x is called

parent of y and y is called offspring of x. Root of tree has no parent whereas

every other node has a unique parent. A parent can have several

offsprings which is also called child or son.

e.g. : a is the parent of b and c. b has two offsprings d and e.

(ix) Leaf : A node having no offsprings (outdeg ree = 0) is called a leaf or

external node or terminal node.

e.g. : d, e, f are leaves.

(x) Siblings : Two nodes having same parent are called siblings.

e.g. : b,c are siblings of a.

(xi) Interior Node : Node with atleast one child.

(xii) Forest : It is an undirected graph whose components are all trees.

Binary Tree :

A tree T is called n-Tree or n-ary tree if every vertex has atmost n offsprings. In

particular, if n = 2, then tree is called binary tree or It is that tree in which every

node can have 0, 1, or 2 offsprings. Moreover, if in n-tree, every vertex of T other than

leaves, has exactly n-offsprings, then T is called complete n-Tree. For n = 2, it is

complete binary tree.

For example :

e

b

a

c

gf

d  is a binary tree.

Moreover, every vertex (except leaves) has 2 children, so it is complete binary tree.
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IX. Properties of Trees :

Here, we state some important properties of trees (the proof is left as an exercise for

the reader) :

Property I : There is one and only one path between every pair of vertices

in a tree T.

Property II : If in a graph G, there is one and only one path between every

pair of vertices, then G is tree.

Property III : A tree with n vertices has n–1 edges.

Property IV : A graph is a tree iff it is minimally connected.

Property V : A graph G with n vertices, (n–1) edges and no circuit is

connected.

Property VI : In any non-trivial tree, there are atleast two vertices of

degree–1 (or two pondent vertices)

Labelled Trees : A tree is paid to be labelled in which every vertex of tree has

assigned a unique label.

For Example :

2

–

3
3 2

xx

x

x

+–

+

–

is labelled binary tree for the expression

(2 – (3 × x)) + ((x – 3) – (2 + x)).

X. Traversal of Binary Trees or Tree Searching

Traversing means to visit each node of tree exactly once. The three standard ways of

traversing a binary tree T with root R
1 
are :

Preorder : Process the root R. Then, traverse the left subtree of R in preorder

and then traverse the right subtree of R in preorder.

Inorder : Traverse the left subtree of R in inorder. Process the root R and

then traverse the right subtree of R in inorder.

Postorder : Traverse the left subtree of R in post order, then traverse the

right subtree of R in postorder and then process the root R.
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For Example :

A

B C

D FE

For the tree :

Preorder Traversal : A, B, D, E, C, F

Postorder Traversal : D, E, B, F, C, A

Inorder Traversal : D, B, E, A, C, F

XI. Spanning Tree

Let G be a connected graph. A subgraph T is called spanning tree if

(i) T is true and

(ii) T contains all vertices of G.

e.g.
T G

T is a spanning tree for the connected graph G.

Remarks :

(1) A spanning tree of graph is not unique.

(2) A graph G is connected iff it has a spanning tree (Proof : Do Yourself)

(3) Cayley's Theorem : The complete graph K
n 

has nn–2 different spanning

trees.

Minimal Spanning Tree : It is a spanning tree of a weighted graph, with the

condition that sum of weights of tree is as small as possible.

Kruskal's Algorithm (To find minimal spanning tree)

Let G be the given connected graph. Then, the algerithm involves following steps :

1. Write all the edges of graph in increasing order of their weight.

2. Select the smallest edge of G.

3. For each successive step, select another smallest edge of G which makes

no cycle with previously selected edges.

4. Go on repeating step 3 until n–1 edges have been selected. The sum of
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weights of there n–1 edges will constitute required minimal spanning

tree.

e.g.

A

B C

D E

231
3

2

3

3

4

3

Here, no. of vertices (n) = 5 Firstly, we write all the edges in increasing order of their

weight.

E = {CD, BD, CE, AB, BC, AD, AE, DE, AC}

We start from edge CD and then select edges one by one from E until we select 4 (i.e.

n–1) edges.

(i) (ii) Select next edge BD

D

C

1
B

2

D

C

1

(iii) Select next edge CE (iv) Select next edge AB

B

2

D

C

1

E

2
B

2

D

C

1

E

2

A
3
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Since, we have selected 4 edges, so we stop here. Sum of weights is

1+2+2+3 = 8

Self Check Exercise :

1. Give an example of graph that has

(i) Euler Circuit but not Hamiltonian Circuit.

(ii) Hamiltonian Circuit but not Euler Circuit.

2. Let G = (V, E) be a simple, connected Planar graph with more than one

edge, then the following inequalities holds.

(i) 2 |E|  3R (ii) |E| 3 |V| – 6

(iii) There is a vertex v of G such that deg (v) 5.
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